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ABSTRACT

In this dissertation, an experimental and numerical study of dense coarse solids-liquid flows

has been performed. The experimental work mainly involved pressure drop measurements

in a vertical flow loop. A limited number of measurements of solids velocity profiles were

also obtained in the upward flow section of the flow loop. The numerical work involved

simulations of coarse particles-in-water flows in vertical and horizontal pipes. The vertical

flow simulations were performed using the commercial CFD software, ANSYS CFX-4.4,

while ANSYS CFX-10 was used to simulate the flows in the horizontal pipes. The simula-

tions were performed to investigate the applicability of current physically-based models to

very dense coarse-particle flows.

In the experimental study, measurements of pressure drop and local solids velocity pro-

files were obtained. The experiments were conducted in a 53 mm diameter vertical flow

loop using glass beads of 0.5 mm and 2.0 mm diameter solids for concentration up to

45%. The liquid phase was water. The measured pressure drop exhibited the expected

dependence on bulk velocity and solids mean concentration. The wall shear stress was

determined by subtracting the gravitational contribution from the measured pressure drop.

For flow with the 0.5 mm particles at high bulk velocities, the values of the wall shear

stress were essentially similar for each concentration in the upward flow sections but more

variation, indicating the effect of concentration, was noted in the downward flow section.

At lower bulk velocities, the wall shear stresses with the 0.5 mm glass beads-water flow

showed a dependence on concentration in both test sections. This was attributed to an in-

crease in the slip velocity. For the large particle (2.0 mm glass beads), similar observations

were made but the effect of concentration was much less in the upward test section. In

the downward test section, the wall shear stress for the flow of the 2.0 mm glass beads in-

creased by almost a constant value for the bulk velocities investigated. The solids velocity

ii



www.manaraa.com

profiles showed that the solids velocity gradient is large close to the wall. In addition, the

solids velocity profiles indicated that the slip velocity increased at lower velocities due to

increase in the bulk concentration in the upward flow section.

For the vertical flow simulations, different physical models based on the kinetic theory

of granular flows were programmed and implemented in ANSYS CFX-4.4. These mod-

els, referred to as the kf − εf − ks − εs, kf − εf − ks − εs − Ts , and kf − εf − ks − kfs

models, were investigated by focusing on the closure laws for the solids-phase stress. The

treatment of the granular temperature Ts depends on whether small- or large-scale fluctuat-

ing motion of the particles is considered. The models were implemented via user-Fortran

routines. The predicted results were compared with available experimental results. The

predicted solids-phase velocity profiles matched the measured data close to the pipe wall

but were higher it in the core region. The solids concentration, on the other hand, was

significantly under-predicted for concentrations higher than 10%. Variations in the predic-

tions of the phasic turbulent kinetic energy and the eddy viscosity were noted; the effect of

solids concentration on them was mixed. A general conclusion drawn from the work is that

a more accurate model is required for accurate and consistent prediction of coarse particle

flows at high concentrations (less than 10%). In a related study, attention was given to wall

boundary conditions again focusing on the effect of the solids-phase models at the wall.

Comparison between numerical predictions, using some of the existing wall boundary con-

dition models for the solids phase in particulate flows, with experimental results indicated

that the physical understanding of the influence of the fluid and solids-phase on each other

and their effect on frictional head loss is far from complete. The models investigated failed

to reproduce the experimental results. At high solids concentration, it was apparent from

the present study that the no-slip and free-slip wall boundary conditions are not appropriate

for liquid-solid flows.

For the horizontal flow case, three-dimensional simulations were performed with a fo-

cus on the velocity and concentration distributions. Medium and coarse sand-in-water flows

in three pipe diameters were considered to investigate the default solids stress models in
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ANSYS CFX-10. Simulations were performed for three cases by considering: 1) no ad-

ditional solids-phase stress, i.e. no model for Ts; 2) a zero equation, and 3) an algebraic

equilibrium model for the granular temperature. The model predictions were compared to

experimental results. The effect of particle size, solids-phase concentration, and pipe diam-

eter was explored using the algebraic equilibrium model. All the cases for the models con-

sidered exhibited the characteristic features of horizontal coarse particle slurry flows. The

zero equation and the algebraic equilibrium model for the granular temperature produced

similar results that were not significantly different from the prediction obtained when no

solids-phase stress was considered. The comparison with experimental results was mixed.

Locally, the measured solids-phase velocity distributions were over-predicted, whereas the

solids concentration was reasonably reproduced in the core of all the pipes. The concen-

tration at the bottom and top walls were over-, and under-predicted, respectively. This was

attributed to the inappropriate phasic wall boundary condition models available.
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CHAPTER 1

INTRODUCTION

A two-phase mixture is made up of two distinct phases such as gas-liquid, gas-solid, or

liquid-solid that co-exist in an arbitrary space. The phases are separated by interfaces and

interact dynamically across these interfaces. For most particulate two-phase flows (i.e.

liquid-solid or gas-solid flows), the fluid phase (also known as the carrier phase) is contin-

uously connected and the solids phase (often referred to as the dispersed or particle phase)

exists as discrete particles. The study of particulate two-phase flows is not only important

from a fundamental viewpoint, but also from the viewpoint of practical applications (e.g.

hydrotransport and pneumatic transport of particles in pipes and channels) and natural flow

phenomena (e.g. atmospheric dispersion, sediment transport in water bodies, and biolog-

ical/biomedical flows). Flows which include granular materials are found in the mining,

chemical, petrochemical, pharmaceutical, and food industries.

Due to the dispersed phase, the physics of two-phase flow is generally more com-

plex than for single-phase flow. Further complications, which are sometimes difficult to

elucidate, arise when the flow is affected by turbulence, and/or when the dispersed phase

undergoes either a fluctuating or continuous contact motion with other particles. In this

case, the solids phase does not follow the flow but interacts and modifies the fluid phase

flow features. The motion of particles in two-phase flow mixtures affects the structure of

fluid-phase turbulence and influences the momentum balance in the flow. Turbulence mod-

ulation in two-phase turbulent flows is also of importance for industrial applications. These

turbulent flows continue to provide a challenge to engineers and physicists in developing an

analytical description and predictive model from first principles. Furthermore, the design
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of conveying systems requires fundamental understanding of the transport mechanisms of

the mixtures.

The analysis of single-phase flows using computational fluid dynamics (CFD) has

steadily advanced in sophistication. Although there are various methods for solving the

Navier-Stokes equation (e.g. Direct Numerical Simulation (DNS), Large Eddy Simulation

(LES)), the so-called Reynolds Averaged Navier-Stokes (RANS) approach is often pre-

ferred due to its reduced computation cost. One of the most widely used turbulence closure

models based on the RANS approach is the two-equation k−εmodel (e.g. see Pope, 2000);

k is the turbulence kinetic energy and ε is the dissipation rate of k. The turbulence kinetic

energy and its dissipation rate are obtained by solving their respective transport equations.

In this model, the Reynolds stress is approximated by the product of the turbulent viscosity

and the mean strain rate. The turbulent viscosity is assumed to be a function of the turbu-

lence kinetic energy and its dissipation rate. Being an isotropic model, the k− ε model has

the limitation of not predicting highly anisotropic and rotational flows well. Nonetheless,

it is the most widely used turbulence model for industrial processes. The simplicity of the

k − ε model makes it amenable to the simulation of complex two-phase flow.

1.1 Motivation for the Present Study

The hydrotransport of solid particles occurs in many natural and industrial processes. Pipel-

ining of oil sands by means of hydrotransport not only reduces material handling costs, but

also provides some initial processing (Lipsett, 2004). During its hydrotransport, the slurry

undergoes a process known as oil sands conditioning where the bitumen separates from the

oil sands matrix. This initial conditioning process facilitates the aeration of the bitumen

droplets prior to entering the separation unit. The transported oil sands slurry overall forms

a complex multiphase system made up of water, bitumen, solids, air, and chemicals. The in-

teraction forces in this complex multiphase system govern the conditioning and separation

as well as tailings handling and disposal.

2
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The development of better mechanistic models requires an understanding of the flow

physics. Other challenges include the effect of large particles on pump performance and

the pipeline itself. Presently, existing mechanistic models can only predict the pipeline

friction with some success using either empirical or ad hoc models. A few detailed stud-

ies have been performed to investigate the local phasic velocity and concentration dis-

tributions (Hsu et al., 1989; Roco, 1990). However, such studies were limited to one-

dimensional analysis and the constitutive relations for the closure terms were empirical.

In this thesis, the two-fluid model is used to model pipe flow of coarse-particle liquid-solid

mixtures. The two-fluid model treats both the liquid and the solids phase as individual flu-

ids which are considered to form an inter-penetrating continuum. This allows the pertinent

flow physics of each phase as well as the interaction between the phases to be considered.

1.2 Classification of Flow Regimes

Two-phase pipe flow regimes depend on the phasic materials, flow rates, and pipe orien-

tation. For liquid-solid flows, the particle diameter and the solids mean concentration are

often used to classify the nature of the mixture and flow regimes. The particle diameter is

often used to determine whether the flow exhibits Newtonian or non-Newtonian behaviour,

or possesses homogeneous or heterogeneous characteristics. The solids mean concentra-

tion is generally used to delineate dilute or dense flows. Before discussing in detail the

flow regimes, illustrative examples for dispersed vertical and horizontal slurry pipe flows

are given in Figures 1.1 and 1.2, respectively, as reproduced from Brennen (2005).

In Figure 1.1, the flow regime is vertical and the constituents are well-mixed; the mean

velocity and concentration fields are symmetric about the centreline. Particle size and con-

centration effects cause the flow to exhibit heterogeneous characteristics (see Sumner et al.,

1990). For the horizontal flow case shown in Figure 1.2, the phasic field variable distri-

butions in the vertical plane vary from symmetric (homogeneous regime) to asymmetric

(heterogeneous regime) forms depending on several factors, including particle size, solids

phase concentration, and the total flow rate. The homogeneous flow regime illustrated by

3
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Figure 1.1: A sketch of two-phase flow in a vertical pipe. Reproduced with permission from
Fundamentals of Multiphase Flow, Brennen, C.E., page 169, Copyright (2005), Cambridge
University Press.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.2: Flow regimes for slurry flow in a horizontal pipeline. (a) Homogeneous flow,
(b) Heterogeneous flow, (c) Flow with moving bed, and (d) Flow over a stationary bed.
Reproduced with permission from Fundamentals of Multiphase Flow, Brennen, C.E., page
170, Copyright (2005), Cambridge University Press.

Figure 1.2a occurs at low or moderate solids concentration and when the fluid phase turbu-

lence velocity scale is much larger that the settling velocity of the particles. In the presence

of large particles, concentration gradients in the vertical direction often exist leading to a

heterogeneous flow regime, e.g. Figure 1.2b. Occasionally, a limiting case where particles

form a bed in the bottom of the pipe occurs and this phenomenon is termed saltation flow.

Two scenarios can occur in saltation flow, a moving bed (Figure 1.2c), where the bulk of
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the packed bed formed at the bottom of the wall moves or a stationary bed (Figure 1.2d)

where the solids phase above a static bed is transported by the fluid phase.

1.2.1 Classification based on particle size

Particle size has been used to classify liquid-solid flow regimes in industrial horizontal

pipelines in some studies. Durand and Condolios (1952) proposed that a slurry flow is ho-

mogeneous when the particle size in the mixture is less than 50 µm; heterogeneous when it

lies between 50 µm and 2000 µm; and a sliding bed flow is encountered when the particle

size is greater than 2000 µm. Roco (1990), on the other hand, indicated that for industrial

pipelines, the flow of mixtures with particle size less than 10 µm corresponds to a non-

Newtonian flow; between 10 µm and 200 µm is quasi-homogeneous flow, and over 200 µm

is considered heterogeneous. One of the leading research institutes conducting slurry flow

research, the Saskatchewan Research Council (SRC) in Saskatoon, Saskatchewan, Canada,

characterizes heterogeneous slurry flow as one with median particle diameter greater than

50 ∼ 100 µm and a sufficiently small content of flocculated fines such that the viscosity

of the carrier mixture (water + fine particles) is not high (Shook et al., 2002). The particle

density and flow conditions also play a role in determining the flow regimes; large particles

that are positively or neutrally buoyant could result in homogeneous flow.

1.2.2 Classification based on solids concentration

For Newtonian heterogeneous flows, the solids concentration is often used as a criterion to

determine when the flow is dilute or dense. If the motion of the particles is controlled by

local hydrodynamic forces then the mixture is said to be dilute. In this case, the effects of

particle-particle interactions may be neglected. For the case where the flow is controlled

by both the local hydrodynamic forces and particle-particle interactions, the mixture is

considered to be a dense mixture.

There is no universal criterion for distinguishing between dilute and dense flows on

the basis of concentration. The criterion varies from study to study and depends on the type

of mixture and the flow structure under investigation. Using the solids concentrationCs and
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the ratio of the inter-particle distance (lfs) to the particle diameter (dp), Elghobashi (1991)

classified dense suspensions for Cs ≥ 0.1% and lfs/dp ≤ 10. In slurry flows, dense flow is

generally assumed for Cs ≥ 5% (e.g. McKibben, 1992), while in fluidized bed research, a

value ofCs > 20% is generally considered to be dense (e.g. Gidaspow, 1994). The physical

characteristics of whether the flow is dilute or dense have been broadly classified into three

categories on the basis of inter-particle collisions (Tsuji, 2000), namely: 1) collision-free

flow or dilute flow; 2) collision-dominated flow or medium concentration flow; and 3)

contact-dominated flow or dense flow.

1.3 Numerical Techniques for Two-Phase Flows

Over the past five decades, mathematical modelling of particulate two-phase flows has been

the focus of many research studies. In general, two distinct methods are used: the Eulerian-

Lagrangian and the Eulerian-Eulerian methods.

1.3.1 Eulerian-Lagrangian method

In the Eulerian-Lagrangian approach, the fluid phase continuity and momentum conserva-

tion equations are solved in the Eulerian framework using the Navier-Stokes equation with

or without additional coupling terms; that is the Direct Numerical Simulation (DNS), Large

Eddy Simulation (LES), and the Reynolds Averaged Navier-Stokes (RANS) formulations.

For the solids phase, the trajectories of the individual particles in the mixture are solved in

the Lagrangian framework using Newton’s second law. The two frameworks are coupled

through interaction forces implemented by considering the coupling mechanisms between

the fluid and the particles. In recent years more complex situations such as particle-particle

interactions have been accounted for using the so-called Discrete Element Method (DEM).

Briefly, the DEM, also called the Discrete Particle Method (DPM), is an extension of New-

ton’s second law to explicitly include inter-particle forces. These forces, expressed in terms

of contact and damping force terms resulting from particle-particle interaction, are derived

from the Hertzian contact theory (see for example, Cundall and Strack, 1979). The imple-

mentation of boundary conditions and the robustness in handling poly-dispersed particle
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size distributions makes the Lagrangian formulation attractive. However, the solids phase

concentration does not explicitly appear in this formulation and requires special treatment.

Nonetheless, the rapid development in the DEM approaches appears to provide a solution

for this drawback in the Eulerian-Lagrangian method, albeit with severe computational

limitations.

1.3.2 Eulerian-Eulerian method

The Eulerian-Eulerian formulation is essentially obtained from some sort of averaging tech-

nique. The averaging techniques often consist of one of the following approaches: 1)

Reynolds Averaged Navier-Stokes (RANS) type modelling, or 2) Probability Density Func-

tion (PDF) modelling. These approaches result in continuum-like governing equations for

the statistical properties of the dispersed phase. In the RANS approach, the equations are

derived using one of several methods. The common methods include: 1) ensemble, 2) vol-

ume, 3) local mass and local time, 4) space/time, and 5) double-time averaging. While a

vast body of literature on the topic exists, the work of Anderson and Jackson (1967); Drew

(1983); Elghobashi and Abou-Arab (1983); Ishii (1975); Jackson (1997); and Whitaker

(1973) are among the most cited. The resulting averaged equations are often similar, but

different modelling and treatment of closure laws have been suggested (see for example,

van Wachem and Almstedt, 2003).

The Eulerian-Eulerian equations for two-phase flows are obtained either by consider-

ing each phase separately using the Eulerian-Eulerian method or by considering the mix-

ture as a single continuum. For the mixture model, averaged phasic equations for each

phase are added together to obtain a single transport equation for the mixture. For ex-

ample, for isothermal flows, the mixture model consists of one continuity equation, one

momentum equation, and one diffusion equation representing the concentration gradient.

For sediment transport and in some slurry flow studies, the Rouse-Smith equation or an ex-

tended form, formally derived from the momentum equation (Greimann and Holly, 2001;

Roco and Shook, 1985) is employed. Bartosik and Shook (1991) and Bartosik and Shook

(1995), used a different approach. Known concentration distributions were supplied to the
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transport equations of the mixture to predict the pressure gradient of slurry flows in a pipe

using single-phase, two-equation turbulence models.

The Eulerian-Eulerian method (commonly known as the two-fluid model) considers

both the fluid and solids phase as two inter-penetrating continua, and the RANS form of

the continuity and momentum equations are solved for both phases. In the two-fluid model,

the solids concentration appears in the transport equations of each phase. Furthermore, it

is possible to account for particle-particle interaction in the two-fluid model at high solids

concentrations. Thus, the solids phase is treated as a ‘fluid’, but the modelling of the solids

phase stresses continues to be a challenge for researchers.

The constitutive models for the solid stresses and the inter-phase momentum trans-

fer are partially empirical. Single-phase flow closures are normally adopted for the fluid

phase with concentration taken into account. For the solids phase, several approaches have

been used to model the stresses in the averaged equations. The momentum equation con-

tains both a solids pressure term and a solids molecular or laminar viscosity term. The

solids pressure is either accounted for using an empirical correlation (Gidaspow, 1994),

the theory of powder compaction (Bouillard et al., 1989) or the kinetic theory of dense

gasses (Chapman and Cowling, 1970). Implementation of the correct solids laminar vis-

cosity is critical. The development of constitutive relations for the solids viscosity is still a

major area of research in the two-phase flow community. A variety of approaches including

a constant value (e.g. Sun and Gidaspow, 1999; Gómez and Milioli, 2001), empirical cor-

relations (e.g. Enwald et al., 1996) and theoretical formulations (e.g. Sinclair and Jackson,

1989; Enwald et al., 1996) have been used to specify the solids viscosity. Empirical corre-

lations of the solids viscosity are usually determined from the mixture viscosity (measured

experimentally), the carrier fluid viscosity, and the solids concentration. In many gas-solid

flows relating to fluidization, the application of granular kinetic theory provides models for

the solids pressure and viscosity of the solids phase (Gidaspow, 1994; van Wachem et al.,

2001). The modelling issues become complicated when turbulence in the solids phase has

to be considered and solids concentration fluctuations are also taken into account. Often the
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solids phase turbulence is modelled in terms of the fluid phase turbulence through an eddy

viscosity expression. In some studies which employ the kinetic theory, the solids phase

turbulent stress is expressed in terms of the granular temperature. Second-order scalar mo-

ments resulting from solids concentration fluctuations are usually modelled using a gradient

diffusion model.

1.3.3 Typical governing equations

As noted in the preceding section, the governing equations for the two-fluid model are

similar irrespective of the averaging process employed. However, the interpretation of the

terms - particularly the unclosed ones - is often different. With this in mind, a general set

of phasic governing equations for isothermal flow are presented.

Continuity equations

Liquid phase
∂

∂t
( cfρf) +

∂

∂xi
(cfρf Ufi) = 0, (1.1)

Solids phase
∂

∂t
( csρs) +

∂

∂xi
(csρs Us i) = 0, (1.2)

with the additional constraint of

cf + cs = 1. (1.3)

The subscripts f and s denote the fluid and solids phases, respectively; c is the volume

fraction or concentration; ρ is the material density; Ui is a component of the velocity field;

and xi denotes a coordinate direction.

Momentum equations

Liquid phase

∂

∂t
(cfρfUfi) +

∂

∂xj
(cfρfUfiUfj) = −cf

∂P

∂xi
+

∂

∂xj
(Tfij) − β (Ufi − Usi) + cfρfgi. (1.4)

9



www.manaraa.com

Solids phase

∂

∂t
(csρsUsi) +

∂

∂xj
(csρsUs iUsj) = −cs

∂P

∂xi
+

∂

∂xj
(Ts ij) + β (Ufi − Usi) + csρsgi. (1.5)

where P is the mean fluid pressure; Tfij and Ts ij are the effective stress tensors for the

fluid and solids phase, respectively; β is the inter-phase drag correlation; and g is the

gravitational acceleration.

1.4 Experimental Techniques for Slurry Flows

Most experimental studies of slurry flows have been limited to measurements of bulk pa-

rameters due to the inherent problems associated with detailed measurements of local field

variables such as velocity and concentration in two-phase mixtures. For liquid-solid mix-

ture flows, the pressure drop, deposition velocity, and in-situ concentration have been mea-

sured. These measurements cover a wide range of particle types and sizes as well as solids

mean concentrations and mean velocities. In most of the studies where local field variables

have been measured, conductivity probes and gamma-ray densitometers are usually used

extensively (Sumner, 1992; Gillies, 1993). The conductivity probe is very sensitive to flow

chemistry and, like the pitot-tube and other intrusive devices, cannot be used to obtain near-

wall measurements due to its poor spatial resolution. While the conductivity probe can

be used to measure local solids phase velocity and concentration, the gamma-ray densito-

meter is often used to measure chordal average concentration distribution to supplement

velocity data measured with the conductivity probe. In general, local measurements have

been hindered by instrument limitations.

The application of non-intrusive devices to measure flow quantities has been extended

to two-phase particulate flows (Tsuji et al., 1984). The use of gamma ray and laser Doppler

measurement techniques have enabled local flow field mean and fluctuating quantities to

be measured in two-phase particulate flows (Alajbegovic et al., 1994; Fessler and Eaton,

1999; Liljegren and Vlachos, 1983). However, because slurry flows are generally opaque,

the use of the common non-intrusive devices is limited to simple flows at low solids con-
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centrations. Nevertheless, application of techniques such as Nuclear Magnetic Resonance

(NMR) and Ultrasonic Doppler Techniques are emerging and showing promise for slurry

data measurement. Presently, the NMR is not applied extensively for turbulent flows and

the ultrasonic technique is only effective for obtaining solids velocity data. Recent stud-

ies employing imaging techniques are also emerging (for example, Kiger and Pan, 2000).

For most multiphase flow data, particularly two-phase liquid-solids flow, only velocity and

concentration profiles are available, while turbulence and higher order statistics are incon-

ceivably difficult to measure. A detailed review of the experimental techniques is provided

in Chapter 2.

1.5 Objectives and Organization of the Thesis

1.5.1 Objectives

In the hydrotransport of slurries with large particles in pipelines, the pipeline friction and

the preconditioning of the slurries are important for the efficient operation of the trans-

port system. The present work is part of a larger collaborative research program between

the University of Saskatchewan and Syncrude Canada Limited in association with the

Saskatchewan Research Council (SRC) to investigate coarse particle slurry flows in pipes.

The project was funded by the Natural Sciences and Engineering Research Council of

Canada (NSERC) through a Collaborative Research Development (CRD) grant supported

by Syncrude Canada Limited. The project involved both experimental and numerical work.

The overall objective of this study was to simulate coarse particle liquid-solid flows

in vertical and horizontal pipes, and to experimentally investigate these flows in a vertical

pipe. The experimental work was conducted at the SRC Pipe Flow Technology Centre.

A vertical flow loop was constructed for the project. The study involved measurement of

radial distributions of solids velocity as well as pressure drop measurements. The numerical

activity was performed at University of Saskatchewan. The numerical study involved the

use of the commercial CFD package ANSYS CFX. The specific objectives are outlined

below:

11
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1. Investigate friction effects by obtaining pressure drop measurements of coarse par-

ticle in water slurry flows in a vertical flow loop using spherical glass beads as the

solids phase.

2. Investigate particulate two-phase flow closure models, with special attention to the

solids stress closure, for the prediction of coarse-particle liquid-solid flows in a verti-

cal pipe using the two-fluid model in ANSYS CFX-4.4. The predicted radial pro-

files of solids velocity and concentration were compared with experimental data

of Sumner et al. (1990).

3. Investigate solids-phase boundary conditions and their contribution to the total pres-

sure drop of liquid-solid flows in vertical pipes. Comparisons between the predictions

and the experimental results of Shook and Bartosik (1994) were made.

4. Predictions of solids velocity and concentration distributions in horizontal pipe flows

of coarse-particle liquid-solids mixtures. The solids stress models implemented in

ANSYS CFX-10 for the two-fluid model were tested. The predictions were com-

pared with the solids velocity and concentration distributions from the benchmark

experimental data from Gillies (1993).

1.5.2 Organization of the thesis

In Chapter 2, theoretical models for pressure drop predictions of liquid-solid flows in ver-

tical and horizontal pipes as well as the effects of solids concentration and particle size

on pipeline friction are reviewed. In addition, the two-fluid model is reviewed in terms

of averaging techniques, closure problems, and formulation of boundary conditions. The

chapter ends with a review of previous relevant experimental studies on vertical and hori-

zontal flows. In Chapter 3, a vertical pipe flow loop facility and an experimental procedure

for solids velocity and concentration measurements as well as pressure drop measurements

are described. The solids velocity measured in the upward flow section of the flow loop

are discussed in Chapter 3. The discussion of the pressure drop data analysis and results

in upward and downward flow sections in a 53 mm diameter vertical pipe is also presented.

12
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The transport equations for the phasic mass and momentum are derived in Chapter 4 by em-

ploying a so-called double averaging technique. Closure equations, as well as additional

auxiliary equations and phasic boundary conditions are also discussed in a general context.

In Chapter 5, liquid-solid flows in a vertical pipe were simulated using three approaches

for the two-fluid model in ANSYS CFX-4.4. The effect of particle diameter and solids

mean concentration on the predicted results is discussed. As well, a comparative study

of five solids boundary condition formulations and their effect on the total frictional head

loss for vertical flows of liquid-solid mixtures is reported. The simulation of coarse par-

ticle liquid-solid flows in horizontal pipes is discussed in Chapter 6, where the effect of

the solids phase stresses implemented in ANSYS CFX-10 on the flow field variables is

investigated. The simulations focused on the solids velocity and concentration results. A

summary, conclusions, contributions, and recommendations for future work are provided

in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, theoretical, numerical and experimental studies of liquid-solid slurry flows

are reviewed. The theoretical part considers methods for frictional head loss prediction and

continuum modelling in the context of the two-fluid model. In the case of the frictional

head loss, pressure drop analysis for vertical flows is considered followed by a discussion

of the two-layer model for horizontal flows. The continuum modelling begins with a review

of averaging techniques for the two-fluid model. Next, modelling techniques used to obtain

closure for the two-phase momentum and auxiliary transport equations are considered. Fi-

nally, a brief survey of particulate flow experiments is provided. Experimental distributions

of phasic concentration and velocity, as well as turbulence field variables, are reviewed. In

addition, recent developments in measurement techniques and their limitations are high-

lighted.

2.1 Predictive Models for Liquid-Solid Flows

Because of its complexity, particulate and multiphase processing was treated
with empiricism in the past decades, while other areas such as single fluid and
solid mechanics attracted most of the scientific attention and relative progress.
Currently, we are witnessing a significant shift of fortune that offers an out-
standing challenge and opportunity to the particulate community. The meth-
ods of investigation for particulate and multiphase processes are rapidly mov-
ing from macroscopic (bulk) to microscopic and mesoscopic (particle-scale)
analysis. The connection between the flow microstructure and macroscopic be-
haviour is a central research issue, and can provide a rational approach for
predictive methods and new design in various industrial processes.

M.C. Roco, Particulate Science and Technology: A New Beginning,

Particulate Science and Technology, Vol. 15, 81-83, 1997.
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The observation of Roco (1997) cited above is particularly true for gas-solid flows and

fluidized beds. However, studies of liquid-solid mixtures such as slurries still rely heavily

on empiricism. This is not surprising because the physics of slurries is further compli-

cated by the fact that the constituents of most practical slurries vary in physical composi-

tion and properties. Analytical methods using bulk parameters have been used for many

years and have had a specific focus on pipeline friction prediction. For example, the two-

(Gillies et al., 1991) or three-layer model (Doron and Barnea, 1993) are used to predict

pressure drops in slurry pipelines. However, to predict local flow variables, the transport

equations for the variables must be solved. That is the case of the mixture model (for ex-

ample, Roco and Balakrishnan, 1985; Roco and Shook, 1984) and the two-fluid model (for

example, Hadinoto and Curtis, 2004; Ling et al., 2002), which are methods used to predict

local field variables of liquid-solid slurry flows. An additional drawback has been the fact

that slurries are opaque, which makes local measurements more difficult. This opacity

is a major setback for modern non-intrusive experimental instrumentation (Crowe, 1993).

Significant advances (e.g. Dudukovic, 2000) have been made in recent years with specific

attention on the measurement of higher-order moments in turbulent fluidized bed experi-

ments for CFD model validation. For gas-solid flows, the experimental data of Tsuji et al.

(1984) have contributed significantly to the development of microscopic models.

Prior to discussion of the theoretical aspects of liquid-solid (or slurry) flows, it is worth

noting some significant earlier work on slurry transport in pipelines. Slurry pipeline design

parameters include flow quantities such as the bulk velocity, the input or delivered concen-

tration, and pressure drop. Several empirical correlations for pressure drop have evolved

since the early part of the twentieth century (Howard, 1939; Wilson, 1942). The exten-

sive work by Durand and co-workers (for example, Durand and Condolios, 1952) on pres-

sure drop measurements for slurry flows was later improved by Wasp and co-workers (cf.

Wasp et al., 1977). Newitt et al. (1955) noted that the contribution of the solids phase to the

frictional head loss is the result of the particles immersed weight being transmitted to the

wall of the pipe. This significant observation forms the basis of pipeline friction calcula-

tions in slurry flow research. Notable correlations can be found in the studies of Charles
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(1970) and Turian and Yuan (1977), which aimed to provide pressure drop information for

different flow regimes. As indicated in the review by Wani et al. (1982, 1983), extrapola-

tion of the results to flow conditions outside the range of the database used to develop them

must be done cautiously. In the following sections, frictional head loss analyses for vertical

and horizontal flows, and a detailed review of the two-fluid model are discussed.

2.2 Liquid-Solid Flow Pressure Drop

Considering the flow mixture as a single fluid, the mixture momentum equation can be

obtained by the summation of equations (1.4) and (1.5). For a fully developed flow, inte-

gration of the axial momentum equation over the pipe cross-section (assumed constant) for

a constant density mixture yields the following expression for the pressure drop

− dP

dz
=

4τw
D

+ ρmg
dh

dz
, (2.1)

where P is the static pressure; z is the pipe axis along the flow direction; g is the acceler-

ation due to gravity; D is the pipe diameter; τw is the total wall shear stress dh/dz is the

pipe inclination; and ρm is the mixture density:

ρm = Csρs + (1 − Cs)ρf . (2.2)

2.2.1 Frictional head loss in vertical flows

In a vertical upward flow, the pressure drop (P1 − P2) measured over a pipe section of

length L is given by
(P1 − P2)

L
=

4τw
D

+ ρmg. (2.3)

The frictional pressure drop is typically expressed in the form

imρfg =
4τw
D
, (2.4)
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where ρf is the liquid density and im is the frictional head loss of the liquid-solid mixture.

The total shear stress τw is treated as the sum of the fluid and particle shear stresses:

τw = τfw + τsw. (2.5)

For Newtonian fluids, the fluid phase wall shear stress is calculated from the linear stress-

strain relationship

τfw = µf

(
dUf

dy

)

w

, (2.6)

where µf and Uf are the dynamic viscosity and the mean velocity of the liquid phase, and

y is the distance normal to the wall of the pipe. A similar argument can be made for the

solids phase if it is considered to exhibit Newtonian behaviour.

For the dispersion of large solids in a Newtonian fluid under shear, Bagnold (1954)

characterised the stresses between the solids as ‘macro-viscous’ and ‘grain-inertia’ regimes,

between which a transitional regime exists. The shear stress at the wall can be written for

the ‘macro-viscous’ and ‘grain-inertia’ regimes as (cf. Shook and Bartosik, 1994)

τsw =






Kvµfλ
3/2
L

(
dUs

dy

) ∣∣∣∣∣
w

Ba < 40

Kiρsd
2
pλ

2
L

(
dUs

dy

)2
∣∣∣∣∣
w

Ba > 450.

(2.7)

In equation (2.7),

Ba =
ρsλ

1/2
L d2

p(dUs/dy)

µf

(2.8)

is the Bagnold number, where dUs/dy is the shear rate of the solids phase at the wall, and

λL is the linear concentration (e.g. Bagnold, 1954; Shook and Roco, 1991) given by

λL =

[(
Cmax

Cs

) 1
3

− 1

]
−1

. (2.9)

In general, the Bagnold number indicates whether the source of granular (i.e. the
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solids phase) stresses is from inter-particle collisions or from the interstitial fluid. In his

study of fluid-particle flows in a shear cell, Bagnold concluded that when the value ofBa is

less than 40, the viscous interstitial fluid dominates and the mixture exhibits a Newtonian

rheology (that is the solids phase stress and strain are linearly related) meaning that the

solids phase stress is due to the viscous effect of the interstitial fluid. This regime is called

the macro-viscous regime. When Ba greater than 450, direct collision between particles

and particle-wall collisions dominate and the stress becomes proportional to the square of

the strain rate; this regime is called the grain-inertia regime. The grain-inertia regime can be

related to the rapid granular flow regime where the stresses are entirely attributed to kinetic

and collisional effects. It should be noted that the concept of a rapid granular flow regime

also extends to dilute regions where it is expected that the contribution of the kinetic stress

will be higher compare to the collisional contribution. The coefficients determined for Ki

and Kv in the work by Bagnold (1954) are approximately 2.25 and 0.013, respectively. In

the study of Shook and Bartosik (1994), it was assumed the velocity gradient at the wall

was equal for both phases since velocity information for both phases is not always readily

available. The same approach was adopted by Bartosik (1996) who modified equation (2.7)

to the form

τsw =
8.3018 × 107

Re2.317
f

D2ρsd
2
pλ

3/2
L

(
dUl

dy

)2
∣∣∣∣∣
w

, (2.10)

where Ref is the liquid phase Reynolds number, and D represents the diameter of the pipe.

Recently, Matousek (2002) evaluated the effect of the modified Bagnold stress at the wall

given by equation (2.10). It was observed that equation (2.10) predicted a much smaller

value for the solids effect than that measured in a vertical pipe for both medium and coarse

sand slurries.

Using the friction factors for the fluid phase and solids phase, and equation (2.5) it can

be shown that the wall shear stress for vertical flows is

τw = 0.5V 2 (ffρf + fsρs) , (2.11)

where V is the bulk velocity, and ff and fs are the friction factors of the liquid and solids-
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phases, respectively. The fluid phase wall stress is determined by estimating the fluid phase

friction factor ff for the pipe using the Reynolds number (Re = DV ρ
L
/µf) and the rough-

ness (k) from the correlation of Churchill (1977). The correlation of Churchill (1977),

which can used for both laminar and turbulent flows over smooth or rough surfaces is often

applied to estimate ff in the slurry flow community:

ff = 2

[(
8

Re

)12

+ (A+B)−1.5

] 1
12

, (2.12)

with A and B given by

A =

{
−2.457 ln

[(
7

Re

)0.9

+ 0.27

(
k

D

)]}16

and B =

(
37530

Re

)16

. (2.13)

For the solids-phase, different correlations for fs have been used for different flow condi-

tions and for various dp/D values. Shook and Bartosik (1994) proposed a correlation of the

form

fs = A

(
dpV ρs

µf

)I1(
dp

D

)I2

λI3
L , (2.14)

where A = 0.0153, I1 = -0.15, I2 = 1.53, and I3 = 1.69. In the study of Ferré and Shook

(1998), the coefficient and indices in equation (2.14) were modified as A = 0.0428, I1 =

-0.36, I2 = 0.99, and I3 = 1.31 to closely match the experimental results.

2.2.2 Frictional head loss in horizontal flows: The Two-Layer Model

The two-layer model concept began with the initial studies of Wilson et al. (1972). The

two-layer model consists of force and mass balances coupled together using the two layers

shown in Figure 2.1. In Figure 2.1, A1 and A2 are the cross-sectional areas of layers 1 and

2, respectively, and A = A1 + A2; C1 and V1 are the concentration and velocity in layer

1; V2 is the velocity in layer 2, and C2 is the incremental concentration in layer 2. The

quantity Clim is assumed to be the total coarse particle concentration in layer 2 including

C1, (i.e. Clim = C1 + C2) (see Gillies, 1993). The quantities S1, S2, S12 are the perimeters

bounded by the surface of the pipe in layers 1 and 2, and of the interface, respectively.
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Also, βha is the half-angle subtended by the interface. The stresses at the boundaries and at

the interface are calculated independently. The upper layer is usually assumed to contain

particles whose immersed weight is balanced by lift forces due to the fluid so that the fluid

and particles (i.e. fines) together form the carrier fluid.

V1 V2 Layer 2 
   (a) 

V1 

V2 

S1 

Layer 1 

(c) 

βha S2 

S12 
A1 

A2 

y 

y 

V 
Clim C1 

(b) 

y 

C C2 

Figure 2.1: Idealized concentration and velocity distributions used in the SRC two-layer
model; (a) cross-section of pipe, (b) step profile for concentration distribution, and (c) step
profile for velocity.

The force balance includes contributions from the fluid wall friction in each layer and

particle-wall friction in the lower layer. The initial two-layer model was developed using

the coefficient of Coulombic friction, ηs, and a friction coefficient that is dependent on

velocity and constituent properties. The research group at the Pipe Flow Technology Centre

of SRC extended the model to coarse particle slurry flows (Gillies et al., 1985) with several

improved versions over the past two decades (Gillies et al., 1991; Gillies and Shook, 2000;

Gillies et al., 2004). Recent versions of the two-layer model for slurry flows in horizontal

or inclined pipes (Gillies et al., 1991; Shook et al., 2002) are based on the concept that the

concentration and velocity distributions at any cross section consisting of the two layers

separated by a hypothetical interface (Figure 2.1).

In horizontal flows, the frictional head loss can be directly determined from the mea-

20



www.manaraa.com

sured pressure gradient

− dP

dz
=

(P1 − P2)

L
=

4τw
D

= imρfg, (2.15)

In the two-layer model for a horizontal slurry flow, the frictional head losses for the upper

and lower layers are given by

imρfg =
τ1S1 + τ12S12

A1
(2.16)

and

imρfg =
τ2S2 − τ12S12 + F2

A2

, (2.17)

respectively, where the stresses τ1 and τ2 are stresses which act on the pipe wall in the

upper and lower layers, respectively; τ1 opposes the motion in Layer 1, while τ2 opposes

the motion in Layer 2; F2 is the Coulombic force which opposes the motion of layer 2.

Equations (2.16) and (2.17) constitute the two-layer model.

2.2.3 Frictional stresses

The frictional stresses in layers 1 and 2, τ1 and τ2, are velocity-dependent and are calculated

from the velocities in the respective layers:

τ
L

= 0.5V 2
L

(ffLρf + fsLρs) , L = Layer 1,Layer 2. (2.18)

In equation (2.18), fαL
is the friction factor of each phase α. The equation shows that

in each layer the frictional stress is produced by fluid (α ≡ f) and solids (α ≡ s) effects.

The fluid contribution to the frictional stress is determined by estimating the fluid friction

factor from equation (2.12). The solid contribution to the frictional stress is determined

by estimating the solids friction factor fs. The current correlation for the solids friction

factor (Gillies et al., 2004) is

fs = λ1.25
L

[
0.00005 + 0.00033 exp

(
−0.10 d+

)]
, (2.19)
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where d+ is the dimensionless particle diameter:

d+ = dp
ρf

µf
uτ = dp

ρf

µf
VL

(
ffL

2

)0.5‘

; (2.20)

and uτ is the friction velocity.

The stress τ12 at the interface between the layers is computed from the velocity differ-

ence V1 − V2 and the density of the upper layer ρ1 using a fanning friction factor character-

istic of the interface f12:

τ12 = 0.5f12 (V1 − V2)
2 ρ1, (2.21)

where ρ1 = C1ρs + (1 − C1) ρf .For highly stratified flows Wilson and Pugh (1995) (cf.

Shook et al., 2002) proposed an interfacial friction factor given by

f12 = 0.2175

[
im

(ρs/ρf) − 1

]0.78

. (2.22)

For flows with less stratification, Gillies et al. (1991) proposed the following relation for

the interfacial friction factor:

f12 =





2
1

[3.36 + 4log10(dp/D)]2
, dp/D < 0.002

2
[1 + 5 + 1.86log10(dp/D)]

[3.36 + 4log10(dp/D)]2
, dp/D ≥ 0.002

(2.23)

2.2.4 Coulombic stresses

The Coulombic and frictional stresses (τ1 and τ2) are modelled using empirical and semi-

empirical correlations that are based on physically sound theories and experimental evi-

dence. The friction due to the particles at the boundary is due to Coulombic effects and

interaction with other particles (Gillies, 1993). The Coulombic friction force F2 is the re-

sisting force exerted by the wall on the particles and creates a normal inter-particle stress

gradient:
dσ

2

dy
= (ρs − ρ

f
) gClim, (2.24)
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where σ
2

is the normal inter-particle stress in Layer 2. Estimation of Clim has been a major

issue in the development of the SRC two-layer model. In the study of Gillies et al. (1985) a

constant value of Clim was used. Taking the solids concentration into account, Gillies et al.

(1991) used a correlation for Clim that depends on the in-situ concentration Cr, mean flow

velocity V , and the terminal falling velocity v∞ for particles with a mass median particle

diameter d50 greater than 74µm :

Cmax − Clim

Cmax − Cr

= 0.074

(
V

v∞

)0.44

(1 − Cr)
0.189 , (2.25)

where Cmax is the maximum packing concentration of the solids, Cr is the mean spatial

volume fraction of the coarse particles, and v∞ is the particle settling velocity at infinite

dilution. A method for estimating the solids mean concentration based on physical argu-

ments and experimental observations was later proposed in the work of Gillies and Shook

(1994) who also postulated a semi-empirical approach for calculating Clim. In the earlier

two-layer models, the interfacial stress was considered to produce a normal stress in the

solids in layer 2, i.e. σ
2

= τ12/tanϕ, where ϕ is the angle of internal frictional of the

particles. Gillies et al. (1991) integrated equation (2.24) and obtained an equation for the

solids shear stress that, in addition to the stress in Layer 2, also depends on the stress at the

interface between the two layers. Later, Gillies and Shook (2000) obtained a Coulombic

shear stress relation that is independent of the stress at the interface between Layer 1 and

Layer 2. The result, expressed as a Coulombic force, is

F2 =
0.5 (ρs − ρ

f
) gD2ηs (sinβha − βhacosβha) (Clim − C1) (1 − Clim)

1 − Clim + C1
. (2.26)

To estimate the frictional head loss using the two-layer model, the slurry flow pipeline

designer must determine the stresses τ1 and τ2 in layers 1 and 2, respectively as well as the

Coulombic force F2. To do that V , Ct, Cmax, D, ρf , ρs, µf , and k must be specified. In

addition, the particle size distribution, the relationship between viscosity and concentration

for the fine particles and the particle drag coefficients must be known. The steps to be taken

leading to the estimation of im are detailed in the works of Gillies (1993) and Gillies et al.
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(2004).

2.3 Particle Size and Concentration Effects on Pipeline Friction

The effect of the particle diameter dp on the fluid phase friction factor is often considered

negligible. It is, however, worth noting that fine particles can change the rheological prop-

erties of the carrier fluid and consequently affect the friction factor. The dependence of the

fluid phase friction factor on concentration is influenced by the concentration of the fines

in the mixture.

The effect of particle diameter on the solids-phase friction factor friction fs is phys-

ically based on the particle-fluid interaction in the near-wall region of the flow. For a

particular flow condition, Wilson et al. (2000) and Wilson and Sellgren (2003) proposed a

Kutta-Joukowski lift force on the particles in the near-wall region that can drive them away

from the wall provided the particles are large enough not to be trapped in the viscous sub-

layer. For small particles trapped in the viscous sub-layer, the lift force is not able to repel

them away from the wall. The resulting effect is either a combined effect of kinematic

and Coulombic friction, if the particles form a moving bed, or a Coulombic friction due

mainly to a stationary bed. In either case, the solids friction would be high. For larger

particles with diameter greater than the thickness of the viscous sub-layer, the recent the-

ory of Wilson et al. (2000) predicts that the lift force will repel the particles from the wall

and this will decrease the friction factor. This has been supported by the experimental re-

sults of Gillies et al. (2004). At higher velocities, the lift force also reduces the Coulombic

friction, significant especially for finer particles.

At low velocities, the friction factor increases rapidly as the concentration is increased

beyond a certain level; Gillies and Shook (2000) noted that this concentration is typically

between 30% and 35%. As shown in their horizontal flow experiments for high concentra-

tion slurries, this indicates that the Coulombic friction will increase at low velocities due to

a high concentration at the bottom of the pipe.
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2.4 Two-Fluid Models

The development of the two-fluid model consists of three fundamentally important steps:

the averaging process, the development of constitutive relations, and the boundary condi-

tion formulation.

2.4.1 Averaging techniques

The ergodic theorem of averaging often assumed for stationary and homogeneous single-

phase turbulence (Kleinstreuer, 2003; Monin and Yaglom, 1971; Wilcox, 2002) is usually

adopted to derive the two-phase mass and momentum transport equations. Prior to perform-

ing an averaging process, a number of assumptions regarding the flow physics are often

made (e.g. Ahmadi and Ma, 1990; Elghobashi and Abou-Arab, 1983). Different averaging

techniques have also been related to particular types of two-phase flows (Roco and Shook,

1985). Over the past three decades, several extensive studies on averaging techniques

for two-phase flows have appeared in the literature. The types of averaging include vol-

ume averaging (e.g. Soo, 1967; Whitaker, 1969, 1973), local mass and local time averag-

ing (e.g. Roco, 1990), and ensemble averaging (e.g. Drew, 1983; Drew and Lahey, 1993;

Drew and Passman, 1999; Joseph and Lundgren, 1990). Others include local spatial aver-

aging (e.g. Anderson and Jackson, 1967; Jackson, 1997, 1998), space-time averaging (e.g.

Elghobashi and Abou-Arab, 1983; Roco and Shook, 1985), and double-time averaging (e.g.

Abou-Arab and Roco, 1990; Roco, 1990).

2.4.2 Two-phase closure problem

In general, the averaged equations of the two-fluid model are very similar in form to the

equations given in Section 1.3.3 irrespective of the averaging technique used; the basic

differences were outlined in that section. The averaging process generates additional quan-

tities (including averages of products) so that the number of unknowns is greater than the

number of equations. The additional quantities must be modelled to close the system of

equations, but typically it is not possible for the closure to apply to all flows. More im-

portantly, Joseph and Lundgren (1990) noted that the closure models derived from one par-
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ticular averaging approach (e.g. ensemble averaging) can be very different from those of

another (e.g. volume averaging). In view of this, the development of constitutive rela-

tions must be treated with caution. This issue has also been pointed out in a few other

studies (Hwang and Shen, 1993; van Wachem and Almstedt, 2003).

The development of constitutive models for multiphase flows continues to be a ma-

jor research topic. This is due to the complex phenomena of fluid-fluid, fluid-particle,

particle-particle, and particle-wall interactions. The physical properties and concentration

of the solid particles are factors that strongly influence the interaction. The fluid-fluid

interactions are modelled using single-phase flow approaches; the fluid-particle interac-

tions are obtained from empirical correlations; and the particle-particle or particle-wall

interactions are often modelled using constitutive equations derived from the kinetic the-

ory of granular flows with or without modified plasticity models based on Coulomb fric-

tion. The pioneering work of Bagnold (1954) was crucial to understanding the particle-

particle interaction phenomena in granular flows. The use of the kinetic theory of dense

gases (Chapman and Cowling, 1970) with application to granular flows (Savage, 1983)

to model these inter-particle interactions has received a lot of attention. Several studies

based on the kinetic theory of granular flow have been applied to a wide range of par-

ticulate two-phase flows. However, only few studies have focused on a variety of liquid-

solid flows (e.g. Abu-Zaid and Ahmadi, 1996; Greimann and Holly, 2001; Hsu et al., 2004;

Ling et al., 2002).

2.4.2.1 Inter-phase momentum transfer

The inter-phase momentum transfer term typically has contributions from drag, lateral lift,

virtual mass, and Basset forces. For the types of flow investigated in the present work,

the lateral lift, virtual mass, and Basset forces are assumed negligible compared to the drag

force and, therefore, only the momentum transfer due to drag is discussed below. In general,

the drag force on a particle in a fluid-solid flow system is represented by the product of the

inter-phase drag function β and the relative velocity.
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Several correlations for β have been proposed in the literature. For flows with high

solids concentrations, the correlations were obtained from pressure drop measurements

in fixed, fluidized, or settling beds. Ergun (1952) performed pressure drop measurements

in fixed liquid-solid beds at packed conditions. The extensive sedimentation experiments

of Richardson and Zaki (1954) led to the correlation between settling velocity and voidage.

The correlation has been extended in many forms to estimate β. Wen and Yu (1966) con-

sidered settling of solid particles in a liquid for a wide range of solids concentration. They

correlated their data with those from other studies for solids concentration in the range

0.01 ≤ Cs ≤ 0.63.

In recent years, studies have been performed on the sensitivity of a number of drag

correlations on predictions for gas-solids flows (e.g. Yasuna et al., 1995) and fluidized

beds (e.g.7 van Wachem et al., 2001). Yasuna et al. (1995) investigated the inter-phase drag

correlations of Ding and Gidaspow (1990), Syamlal (1990), Richardson and Zaki (1954),

and Schiller and Naumann (1933) for gas-solid flows in a vertical pipe. Overall, it was con-

cluded that the computed results were insensitive to the choice of the inter-phase drag cor-

relation for the solids phase concentration range considered. van Wachem et al. (2001) in-

vestigated the effect of the inter-phase drag correlations of Gidaspow (1994), Syamlal et al.

(1993), and Wen and Yu (1966) on flow predictions in freely bubbling, slugging and bubble

injected fluidized beds. van Wachem et al. (2001) found that the inter-phase drag correla-

tions of Gidaspow (1994) and Wen and Yu (1966) reproduced flow features observed in

experiments better than the correlation of Syamlal et al. (1993). The performance of most

of the current two-fluid models has been generally attributed to the accuracy of the inter-

phase drag term used (Zhang and Reese, 2003a).

In dilute flows, the inter-phase drag function typically depends on the drag coefficient,

CD, for a single particle and is based on the number of particles per unit volume. A simple

form is given by

β =
3

4
CD

csρf

ds
|Usi − Ufi|, (2.27)
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where ds is the diameter of the particle, CD is the drag coefficient of a single particle, and

ρf is the density of the fluid phase. The drag coefficient varies for different flow regimes

and depends on the particle Reynolds number Rep. In the viscous and inertial regimes, the

drag coefficient correlations commonly used are those of Schiller and Naumann (1933):

CD =





24/Rep Rep ≤ 0.1,

24/Rep(1 + 0.15Re0.687
p ) 0.1 < Rep < 1000,

0.44 Rep ≥ 1000,

(2.28)

where Rep = ρf |Us − Uf |dp/µs is the Reynolds number. For many particulate flows with a

wide range of solids concentration, the experimental studies mentioned above are usually

employed to provide correlations for the inter-phase drag coefficient that account for the

dense regions in the mixture. For dense flows, the so-called Ergun equation is used to

obtain the inter-phase drag correlation in CFX-4.4 (Gidaspow, 1994);

β = 150
c2sµf

(1 − cs)d2
s

+ 1.75
csρf

|Usi − Ufi|
ds

. (2.29)

For the Wen and Yu (1966) model, the inter-phase drag correlation is given by

β =
3

4
CD

cscfρf

ds
|Usi − Ufi| cf −2.65 (2.30)

In this case, the drag coefficient used is given by

CD =





24/cfRe [1 + 0.15(cfRe)

0.687] cfRe < 1000

0.44 cfRe ≥ 1000.
(2.31)

The correlations of Garside and Al-Dibouni (1977) and Richardson and Zaki (1954) were

used by Syamlal et al. (1993) to determine the terminal velocity in fluidized and settling

beds expressed as a function of the solid volume fraction and the particle Reynolds number.

The drag coefficient is readily determined from the terminal velocity. Thus, the inter-phase
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drag correlation of Syamlal et al. (1993) is

β =
3

4
CD

cscfρf

v2
r,s ds

|Usi − Ufi|, (2.32)

where the drag coefficient has the form derived by Dalla Valle (1961)

CD =

(
0.63 + 4.8

√
vr,s

Re

)2

(2.33)

and vr,s is the terminal velocity correlation of Garside and Al-Dibouni (1977) for the solid

phase,

vr,s = 0.5
[
a− 0.06 Re+

√
(0.06Re)2 + 0.12Re(2b− a) + a2

]
. (2.34)

In equation (2.34), a and b are expressed as

a = c4.14
f (2.35)

and

b =





0.8 c1.28

f cs ≥ 0.15

c2.65
f cs < 0.15

. (2.36)

2.4.2.2 Fluid-phase stress closures

Closure for the fluid-phase effective stress for turbulent flow is normally derived using

methods available for single-phase flows. The viscous stress tensor is defined using the

linear stress-strain relation. In the context of the k − ε model, the turbulent or Reynolds

stress tensor is calculated using the eddy-viscosity approximation based on the Boussinesq

assumption. The determination of the eddy-viscosity requires a solution to the transport

equations of the turbulence kinetic energy k and its dissipation rate ε. This approach has

been widely adopted but also treated with caution (Bolio et al., 1995), since the constants

appearing in the modelled equations of k and ε are the same as those used for single-phase

flows.
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Squires and Eaton (1994) investigated the values of two model constants in the trans-

port equation of the dissipation rate of the turbulence kinetic energy by comparing the solu-

tions from a gas-phase k − ε model with DNS simulation data for homogeneous isotropic

turbulence interacting with particles. The constants are Cε2
, which appears in the source

term for a single-phase flow and Cε3
that appears as an additional source term that accounts

for inter-phase turbulence interaction. They showed that these two constants depend on

the Stokes number, i.e. the ratio of the turbulence time scale to the particle response time

(tT/tp) and the loading,Xfs = csρs/cfρf . For the cases they investigated, the results showed

that for tT/tp = 0.14 and Xfs = 1.0, Cε2
increased by a factor of 6 and Cε3

by a factor of

4 compared to the single-phase values. The influence of particles was found to depend less

on the loading for a higher Stokes number of tT/tp = 1.5. Bolio et al. (1995) performed a

sensitivity test on the model constants c1, c2, cµ, σk, and σǫ, using a low-Reynolds number

model and found the effect of the variations on their predictions to be insignificant when

the values of the constants were varied by ±0.1. In the study of Cao and Ahmadi (1995),

the particle effect was accounted for by using a model constant that depends on the Stokes

number and solids concentration in the eddy-viscosity relation.

2.4.2.3 Solids-phase stress closures

For the solids-phase, the effective stress tensor has been interpreted differently in the liter-

ature depending on whether the flow is dilute or dense. The treatment for the solids-phase

viscous stress was discussed in Chapter 1. For dilute flows, Rizk and Elghobashi (1989) ex-

pressed the eddy-viscosity of the solids-phase in terms of that of the fluid-phase. Bolio et al.

(1995) employed the kinetic theory of granular flow using the constitutive equations devel-

oped in the study of Lun et al. (1984) with a slight modification to account for the particle

mean free path. In this case a transport equation for the so-called granular temperature

was solved. The model of Bolio et al. (1995) was extended further by Hrenya and Sinclair

(1997), who considered turbulence in the particle phase and employed a mixing length

model for the solids-phase eddy-viscosity. Cao and Ahmadi (1995) modelled the solids-

phase eddy-viscosity using a two-equation ks − εs model, where a transport equation for

ks was solved and εs was calculated using an algebraic equation. Interestingly, all of the
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models used in these independent studies produced reasonable agreement with velocity and

turbulence data from the dilute flow experiments of Tsuji et al. (1984).

Cao and Ahmadi (1995) extended their simulations to dense flows using data from

the study of Miller and Gidaspow (1992) while Hrenya and Sinclair (1997) compared their

results with the experimental data of Lee and Durst (1982). For dense flows, the effective

stress tensor is modelled in terms of the granular pressure, collisional stress and kinetic

or streaming stress (Gidaspow, 1994; Enwald et al., 1996; Peirano and Leckner, 1998). As

well, when turbulent fluctuations in the solids-phase due to concentration fluctuations are

assumed, additional terms appear in the momentum equation that must also be modelled.

Presently, models based on the kinetic theory are developed using the following assump-

tions: mean spatial gradients of velocity and granular temperature are small, a low level of

anisotropy exists, particles are nearly elastic and do not rotate, and the solids concentration

gradient is assumed negligible. For liquid-solid flows, it is evident that these assumptions

are not always met as the experimental data of Alajbegovic et al. (1994) demonstrates.

For horizontal flows that fall within the regimes shown in Figure 1.2, an elaborate

model will be one that considers all three regimes, i.e. homogeneous, heterogeneous, and

saltation flow regimes. This could be achieved by employing the concepts of slow and

rapid granular flows.

Slow granular flows assume a quasi-static regime where the stress is determined us-

ing theories from soil mechanics. A number of models have been proposed since the

derivation by Schaeffer (1987) and are typically based on the Coulomb yield friction cri-

terion (cf. Jenike and Shield, 1959), which states that the principal shear stress is directly

proportional to the principal normal stress, where the proportionality constant is the sine

of the internal friction angle ϕ. Some of the proposed forms can be found in the works

of Johnson and Jackson (1987); Johnson et al. (1990) and Syamlal et al. (1993). Rapid

granular flow refers to the regime where random particle velocities exist. As in turbulence,

the particle velocities can be decomposed into mean and fluctuating components. The en-
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ergy associated with the fluctuating motions is represented by the granular temperature,

Ts.

The study by Bagnold (1954) has been the motivation for the subsequent development

of the kinetic theory of granular flow. Savage and Jeffrey (1981) and Jenkins and Savage

(1983) applied the kinetic theory of dense gases to develop a more rigorous theory for

rapid granular flows. An extensive literature on the subject exists, and detailed studies

and reviews (Enwald et al., 1996; Peirano and Leckner, 1998; Simonin, 1996) as well as

books (e.g. Gidaspow, 1994) have been published. Therefore, it is now a common practice

to model solids-phase stresses in particulate two-phase flows using the kinetic theory of

granular flow. The dry granular flow models of Gidaspow (1994) and Lun et al. (1984)

with some minor modifications by other authors, as well as the extension of the work

of Jenkins and Richman (1985) by Peirano and Leckner (1998) to account for interstitial

fluid effects, can be considered state of the art models, at least for pneumatic transport and

fluidization applications.

2.4.2.4 Coupling mechanisms

The coupling mechanisms in two-phase flows are related to the interaction between the

primary phases (i.e. fluid) and the secondary phase (i.e. particles, droplets etc), and/or

between the particles of the secondary phase and their effect on the fluid turbulence. For

very dilute suspensions, say cs ≤ 10−6 or l12/dp ≥ 100, the particles have negligible effect

on the turbulence of the fluid and their motion is governed by the turbulent motion of the

fluid-phase. Here, l12 is the relative distance between two particles. In this regime, the

dispersion of particles depends on the state of the fluid-phase turbulence but there is no

feedback to the fluid-phase turbulence. This mechanism is termed ‘one-way coupling’. A

second regime, referred to as ‘two-way coupling’, is characterised by 10−6 < cs ≤ 10−3

or 10 ≤ l12/dp < 100, where the solids concentration is large enough so that the particles

can either enhance or damp the turbulence. Gore and Crowe (1989) analysed several inde-

pendent experimental data and observed that if dp/lf > 0.1 (lf is the integral length scale),

turbulence is enhanced and if dp/lf < 0.1, turbulence is attenuated. In addition to the two-
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way coupling mechanism, a third regime arises if the relative distance between particles,

l12 is small enough for particle-particle interactions to occur. The term ‘four-way coupling’

is often associated with this regime.

To determine the effect of particles on the fluid turbulence, Hetsroni (1989) suggested

that particles enhance turbulence due to vortex shedding when the particle Reynolds num-

ber, Rep > 400. The particle Reynolds number is based on the particle diameter, the

velocity of the particle relative to the fluid, and the fluid properties. Elghobashi (1994)

proposed that the ratio of the particle response time scale tp to the turbulence time scale tT

can be used to determine how the fluid turbulence is modified. This is illustrated in Figure

2.2. In Figure 2.2, particles at a concentration of cs = 10−4 or less have negligible effect

on the fluid turbulence irrespective of their time scale. Between cs = 10−4 and cs = 10−3,

particles with a small response time decrease turbulence and those with large response

time increase it. Beyond cs = 10−3, the particle-particle interactions become dominant and

independent of the particle time response time.
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Figure 2.2: Particle effect on fluid turbulence.
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2.5 Boundary Conditions

Like any other flow, accurate specification of boundary conditions for liquid-solid slurry

flows is very important because it heavily influences the wall shear stress and the near-wall

turbulence production. However, while the importance of the boundary conditions, espe-

cially for the solids-phase, have been emphasized in some studies, the free slip boundary

condition or zero shear stress at the wall is commonly assumed. The pressure gradient

required to overcome friction is an important design parameter for slurry pipelines. For

single-phase flows and very dilute two-phase flows, specification of the wall boundary con-

dition - from which the wall friction effects can be evaluated - is well established. Theo-

retically, the wall shear stress for dilute flows is estimated by considering the mixture as a

single fluid as in the mixture model (e.g. Roco and Shook, 1983). The application of the

two-fluid model allows consideration of phasic boundary conditions and their contributions

to the total wall shear stress and hence the pipeline friction.

Both wall function and low-Reynolds number formulations for wall boundary condi-

tions for the fluid phase are used by various authors. Rizk and Elghobashi (1989) showed

using a low-Reynolds number model that the wall function formulation is questionable,

even for dilute flows, since a significant deviation from single-phase flows can occur at

relatively low solids concentration. Sinclair and co-workers (e.g. Bolio et al., 1995) and

others, for example Cao and Ahmadi (1995, 2000), have used the low-Reynolds number

models to simulate gas-solid flows and obtained good agreement with the experimental

data of Tsuji et al. (1984). The use of a wall function for flows in which local agglomer-

ation of particles occurs in the near-wall region was questioned by Rizk and Elghobashi

(1989). However, the wall function formulation has also been used extensively for various

two-phase flows. Louge et al. (1991) reported that for dilute flows, the presence of the parti-

cles does not greatly affect the applicability of the law of the wall. This will not be true for

dense flows especially in the horizontal orientation where the flow can be significantly strat-

ified leading to the formation of a stationary or moving bed. In the case where the particles

settle, the particles will perturb the fluid-phase near-wall flow field. Such concerns have
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been raised in recent years even for dilute flows (Benyahia et al., 2005; De Wilde et al.,

2003). Using a two-phase boundary layer law-of-the-wall, Troshko and Hassan (2001)

formulated a wall function to simulate bubbly flow in a vertical pipe. Hsu et al. (2004)

used the wall function formulation in their sediment transport simulation and most re-

cently, Benyahia et al. (2005) extended the wall function by accounting for particle drag

at the wall and implemented it for dilute gas-particle flows.

For the solids-phase, a boundary condition which accounts for the physical interac-

tions between the particles and the wall is required. For confined flows of particulate

two-phase mixtures, the particle-wall interactions in the form of particle bouncing, slid-

ing, and rolling all contribute to the difficulty in deriving a generic wall boundary condi-

tion (e.g. Sommerfeld, 1992). Often, a number of assumptions are made to simplify the

problem: 1) coarse particles roll over the wall surface while fine particles stick to it, 2)

the particles have a zero normal velocity at the wall, and 3) in the tangential flow direc-

tion at the wall the particle can experience a scenario between the free-slip and the no-slip

condition. For Eulerian-Eulerian simulations of gas-solid flows, several studies (for exam-

ple Bolio et al. (1995), Ding and Gidaspow (1990), Ding and Lyczkowski (1992), Hui et al.

(1984), Johnson and Jackson (1987), and Tsuo and Gidaspow (1990)), have used different

formulations for the solids-phase wall boundary condition. These approaches, often re-

ferred to as partial slip boundary conditions, imply a finite contribution of the particle wall

shear stress to the total pressure gradient. The partial slip conditions are in contrast to the

free-slip boundary condition for the solids-phase (i.e. zero particle wall shear stress) of-

ten applied in the two-fluid modelling of two-phase flows, particularly in commercial CFD

packages.

2.6 Experimental Studies

Over the five decades since the experimental work of Bagnold (1954), the study of par-

ticulate flows has been the subject of many investigations. Experimental investigations of

liquid-solid flows are relatively scarce compared to studies on gas-solid flows, although

35



www.manaraa.com

several proprietary databases exist. Nonetheless, significant data of bulk flow quantities

such as pressure drop have been accumulated over the years. Some of these studies include

investigations by (Gillies et al., 1985; Gillies, 1993; Hanes and Inman, 1985; McKibben,

1992; Sumner et al., 1990; Sumner, 1992; Zisselmar and Molerus, 1986). In liquid-solid

flows, these data include the pressure gradient, deposition velocity, and in-situ and deliv-

ered concentrations. Experimental studies of fluid-particle two-phase flows have mostly

been limited to measurements of bulk parameters due to the inherent problems associated

with local measurements in such mixtures.

To understand the physical mechanisms that control the solids concentration distri-

bution in liquid-solid flows, detailed measurements are very important. Significant im-

provements have been made in the application of non-intrusive techniques to measure par-

ticulate two-phase flow quantities. The application of the Phase Doppler Particle Anal-

yser (PDPA) and Laser Doppler Velocimetry (LDV) techniques to obtain local flow quan-

tities including fluctuating quantities in particulate two-phase flows is becoming more

common (Alajbegovic et al., 1994; Fessler and Eaton, 1999; Liljegren and Vlachos, 1983;

Tsuji and Morikawa, 1982; Tsuji et al., 1984), although they are still limited to dilute flows.

For liquid-solid slurry flows, the use of the conductivity probe together with the gamma

ray densitometer for the measurement of local solids velocity and chord-averaged solids

concentration, respectively, is a common practice. Extensive datasets on horizontal flows

have been produced using these techniques for the past three decades (Brown et al., 1983;

Gillies et al., 1984, 1985, 1999). The conductivity probe has also been extended to lo-

cal concentration measurements (Gillies, 1993; Lucas et al., 2000; Nasr-El-Din et al., 1986,

1987; Sumner et al., 1990).

2.6.1 Vertical flow experiments

Vertical flows are often considered simpler than horizontal flows from an experimental

viewpoint. However, due to their limited applications, fewer vertical flow experiments

are reported in the literature. The experimental studies of Durand and Condolios (1952)

and Newitt et al. (1955) began the series of work on vertical liquid-solid flows. The experi-
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ments of Durand and co-workers were conducted in pipes with diameters ranging from 40

to 700 mm. The flows involved sand and gravel slurries with sizes in the range of 0.2 to

25 mm and the concentrations were between 5 - 60%. For experiments using a 150 mm

vertical pipe with sand particles, they found that the frictional head loss was indistinguish-

able from that of the flow of pure water. In addition, the solids concentration profile was

observed to be uniform for most of the pipe cross-section. Using different particle sizes

between 0.1 mm and 3.8 mm, Newitt et al. (1955) studied the flow of liquid-solid mixtures

in 25.4 mm and 54 mm vertical pipes. They also found that for solids concentration less

than 20%, the frictional head loss was almost identical to that of single-phase water. A sim-

ilar observation was made by Newitt et al. (1961) who used a 51 mm vertical pipe. Overall,

they observed that for the coarse particles, the frictional head loss was similar to the obser-

vations of Durand and Condolios (1952). At lower solids mean concentrations, the effect

on the fluid velocity profile was found to be negligible. In contrast, for higher solids mean

concentration the maximum fluid velocity decreased with a corresponding increase in ve-

locity near the wall of the pipe. The solids concentration was found to be higher in the

central core of the pipe surrounded by an annulus of lower concentration.

In a collaborative work, McKibben (1992) and Sumner (1992) showed results that con-

firmed the observations by Newitt et al. (1961). For flows with larger particles particularly

at high solids concentrations, the head loss observed was higher than for a single-phase

flow of the carrier fluid (Shook and Bartosik, 1994). Shook and Bartosik (1994) noted the

effect to be more significant as the particle size increases above 1.5 mm. Further studies

by Ferré and Shook (1998) aimed at exploring this effect supported the observation that

the wall friction in turbulent slurry flows in vertical pipes increases as the particle size in-

creases. Alajbegovic et al. (1994) used a state-of-the-art Laser Doppler Velocimetry (LDV)

system to measure both liquid and solids velocity, as well as solids concentration in a ver-

tical pipe for dilute liquid-solid flows using ceramic and polystyrene particles. In addition

to the mean field variables, they obtained phasic turbulence intensities in the axial and ra-

dial directions and phasic Reynolds shear stresses. The solids concentration measurements

were calibrated against data measured with a gamma ray densitometer. They found that
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the LDV can be used for two-phase liquid-solids flows to measure the liquid and solids

velocity as well as the higher order statistics of both phase, The solids concentration was

also obtained. The data were used to validated their numerical model.

2.6.2 Horizontal flow experiments

The investigations of Durand’s and Newitt’s group again were among some of the earliest

detailed studies of horizontal slurry flows. The experimental work of Daniel (1965) is one

of the first studies on coarse particle slurry flows focusing on velocity and concentration dis-

tributions. In his work, solids concentration distributions of liquid-solid flows in a 25 mm

high by 102 mm wide rectangular channel were measured using a gamma ray densitometer.

Different sized sand, nickel and lead particles were used. The solids concentration distribu-

tions obtained showed varied asymmetric characteristics that can be attributed to particle

properties and solids concentration. In general, the solids concentration was large near the

lower wall and decreased rapidly toward the upper wall. Mixture velocities were also ob-

tained. The velocity showed asymmetric distributions, which depended on particle size and

solids concentration. Besides slurry flows with fine particles (e.g. Gillies et al., 1984) and

multi-component slurry flows (Gillies, 1993) for which extensive data has been acquired at

the SRC, several coarse-particle data have also been collected (see Roco and Shook, 1983).

These experiments have exhibited similar asymmetric features.

2.7 Summary

In this chapter, some of the predictive models as well as experimental techniques for partic-

ulate two-phase flows were reviewed. The methods for pressure drop prediction in slurry

flows with coarse particles in both vertical and horizontal flows were discussed. Numerical

prediction techniques using the two-fluid models were also presented. Flow characteriza-

tion using various variables such as concentration, and length and time scales was reviewed.

The limited availability of local experimental data necessary evaluating model predictions

was noted.
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Predictive approaches which use bulk parameters are desirable in the design process

of slurry conveyance systems. However, they are limited in elucidating the microscopic

description of the mechanisms associated with the transport process. In the present work,

the experimental database is expanded by the provision of new sets of pressure drop results.

In addition, the two-fluid model is used to model these flows. Only few applications of the

two-fluid model for liquid-solids flows predictions, especially for high bulk concentrations,

have been reported in the literature. The present study employs this model to predict the hy-

drotransport of coarse particles. The closure laws for the solids stress tensor are a particular

focus of this study.
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CHAPTER 3

MEASUREMENT OF PRESSURE DROP IN VERTICAL FLOWS

In this chapter, the experimental facility, instrumentation, and procedure used for measuring

pressure drop in vertical flows are discussed. A circulating flow loop of circular cross-

section built at the Saskatchewan Research Council (SRC) Pipe Flow Technology Centre is

briefly described. The experimental results obtained for the flow of mixtures of water and

glass beads at various bulk concentrations are discussed.

3.1 Experimental Apparatus and Instrumentation

The experimental facility used in this study consists of a 53.2 mm diameter, 9.5 m high ver-

tical pipe flow loop which was constructed and installed at the SRC Pipe Flow Technology

Centre. Figure 3.1 shows the layout of the flow loop. The flow loop was constructed using

stainless steel for the upward (4) and downward (5) flow test sections and carbon steel for

the remaining parts. The main components of the flow loop include a variable speed pump

(13), a stand tank (11), and valves (2, 9, 14, and 15) to facilitate the operation of the system.

The measurement instruments used are an electromagnetic flow meter (10), temperature

sensor (12), and pressure transducers. Differential pressure transducers were used to mea-

sure pressure differences ∆P in the upward flow and downward flow test sections and a

pressure gauge (7) was used for recording the overall pressure in the system.

A centrifugal slurry pump (Linatex 3 × 2 pump) with a 75 mm inlet and 50 mm

discharge was used to circulate the mixture in the flow loop. The pump is powered by a 15

kW electric motor and a Reeves variable speed drive to control the pump speed and hence

the flow rate. An electromagnetic flow meter (EMFM) - Foxboro Flowmeter (M-213326-
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Figure 3.1: 53 mm vertical slurry flow loop
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B) with a Foxboro Transmitter (E96S-IA) - was used to determine the flow rate in the flow

loop. The flow meter was calibrated by collecting weighed samples over measured time

intervals. An initial calibration was performed using water. Subsequent in-situ calibrations

to verify the effect of solids concentration were performed. For this calibration, quantities

of the water-sand mixture at different concentrations flowing through the electromagnetic

flow meter were collected over a time interval and weighed. The data was compared with

the case of single-phase water flow. The calibration results demonstrated that the output

of the EMFM (i.e. voltage reading) was proportional to the total volume flow rate of the

mixture. A detail description of this calibration procedure is provided in Appendix A.

Double pipe heat exchangers were installed on both the upward and downward sec-

tions of the loop to control the temperature of the mixture. The temperature was controlled

by circulating warm or cold ethylene glycol-water mixtures through the annulus of the heat

exchangers. For each condition considered, the temperature of the slurry was controlled

within ±3o C. The pressure drops in the upward and downward sections of the flow loop

were measured for steady flow conditions. Differential pressure transducers were used to

determine the pressure difference between pressure taps located 2.134 m apart. For the

present study, only the average pressure values were available as output for analysis. The

test sections were preceded by long straight disturbance-free pipe section (about 4.0 m),

which included the heat exchangers. Thus, in addition to their central function, the instal-

lation of the heat exchangers also facilitates fully-developed flow conditions prior to the

measurement section.

The layout of the flow loop allows upward and/or downward flow measurements of

local solids concentration and velocity profiles. Local measurements of both solids concen-

tration and velocity using conductivity probe (the L-probe) for slurry flows were originally

planned. However, during preliminary testing significant and inconsistent fluctuations in

the conductivity measurements were observed due to changes in the chemistry of the mix-

ture. As a result, it was decided that this aspect of the study should be deferred to future

work. Here, a brief discussion of the solids velocity measurements is presented. The L-
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probe followed previous designs by Brown et al. (1983) and Nasr-El-Din et al. (1986) at

the University of Saskatchewan and SRC Pipe Flow Technology Centre. The probe, shown

in Figure 3.2a, has a diameter of 3.2 mm. Compared to previous probes of this kind, the

size of the probe used in this study was expected to produce fewer disturbances in the flow.

The test section where the probe was installed is shown in Figure 3.2b. The probe consists

of two pairs of sensor electrodes separated by 6.0 mm in the streamwise direction. Each

pair of sensor electrodes is 2.0 mm apart. A field electrode is placed above each pair of

sensor electrodes and the body of the probe acts as the electrical ground as shown in Figure

3.3. A similar probe was built into the wall of the test section.

The local solids concentration is determined from measurements of the electrical resis-

tivity of the mixture and the carrier liquid. Since the voltage drop across a sensor electrode

is directly proportional to the electrical resistance of the carrier fluid, the local solids con-

centration is determined by measuring the time-averaged mixture voltage drop Em and the

carrier fluid voltage drop EL. Typically, for horizontal flow, the carrier fluid voltage drop is

determined by stopping the flow and allowing the solids to settle. For vertical flow, to avoid

the solids from settling and thereby plugging the flow loop, a small quantity of the mixture

is bled and the voltage drop of the liquid in the collected mixture is measured and used

as EL. The solids concentration is calculated using the equation derived by Maxwell (cf.

Sumner, 1992):

cs =
2 (Em − EL)

(2Em + EL)
. (3.1)

It is worth noting that the solids velocity measurements are not susceptible to the con-

ductivity issues. The particle velocity is measured using the temporal fluctuations in the

potential difference measured at the two pairs of sensor electrodes. Cross-correlation of

these fluctuating signals results in a correlation peak corresponding to the time required for

the particles to travel between the two pairs of sensor electrodes. The time-averaged veloc-

ity of the solids in the vicinity of the probe is determined by dividing the distance between

the sensors by the time corresponding to the cross-correlation peak. These measurement

techniques are detailed elsewhere (Gillies, 1993; Sumner, 1992). In the present study, the
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Figure 3.2: (a): Conductivity probe, and (b): test section.
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Figure 3.3: Conductivity probe design.
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cross-correlation algorithm used was developed in-house by Dr. Gillies at the SRC Pipe

Flow Technology Centre.

As mentioned above, extensive measurement of local solids concentration and velocity

was suspended after preliminary studies revealed inconsistent conductivity measurements.

The problem associated with the conductivity probe only affected the concentration data

and not the solids velocity data. Moreover, after running the solids in the flow loop for

some time, the particles eroded the bend of the conductivity probe exposing and wearing

off the wires leading to the electrodes. In addition, some of the 2.0 mm glass beads were

broken after running the flow loop at 40% solids bulk concentration, which was the first

test case for that particle size. The velocity data obtained with the conductivity probe are

presented below.

3.2 Materials and Experimental Conditions

Two sizes of spherical glass beads (0.5 mm and 2.0) mm from Potters Industries Inc. were

used in this study. The material density of the glass beads is 2500 kg m−3. The density and

viscosity of the water were determined from correlations using the temperature measured

during the experiments. Measurements were made for mixture flows involving each particle

diameter. For the smaller particles, six solids bulk concentrations from 0 to 45% were

considered and for the larger ones, three solids bulk concentrations between 0 and 40%

were investigated. The mean velocity ranged from approximately 1 to 5 m s−1 depending

on the solids bulk concentration. Measurements were obtained for upward and downward

flow directions.

3.3 Experimental Procedure

The experimental procedure involves the flow loop operation and data acquisition. The

flow loop operation consists of the initial set-up of instrumentation, the start-up, solids

addition, solids discharge, and the shut-down stages. For data acquisition, the pressure

transducers were zeroed in both test sections prior to starting up the flow loop. During the
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loop operation, pressure drop measurements were obtained for water and the water-solids

mixture before and after the addition of the solids.

3.3.1 Flow loop operation and data acquisition

Hot water at approximately 50oC was first introduced into the flow loop through the drain

(16) (see Figure 3.1) with all the valves, except those connected to the pressure taps and the

air bleed valve (2), open. Hot water is used to speed the removal of excess air in the system.

The stand tank valve (14) is closed when the stand tank is about three-quarters full. The air

bleed valve is then opened and the filling of the flow loop is continued until water collects

in the funnel (1) attached to the air bleed valve indicating flow loop overflow. The flow of

water is stopped at this point, the drain and the air bleed valves are closed, and the stand

tank valve (14) is opened. The hot water is further heated to 60oC by re-circulating hot

glycol in the heat exchangers (3 and 6). At the same time the pump is powered and air bub-

bles trapped in the flow loop are removed through the stand tank. All the air in the system

is assumed to be purged when air bubbles are no longer observed escaping from the stand

tank. The water is slowly cooled to the desired operating temperature by re-circulating cold

glycol in the double pipe heat exchangers. A flow rate is then set and pressure drop mea-

surements are made when steady state is observed. The steady state condition is assumed

when the change in the pressure drop is minimal for about five minutes. At this point,

a number of pressure drops in the upward and downward sections are read and averaged

within 60 seconds of reading. The pressure drop measurement is repeated for a number

of flow rates at increments of about 0.5 m s−1 depending on the bulk concentration of the

solids.

After the pure-water pressure drop measurements, a known mass of the glass beads

is mixed with water and shaken to remove any air bubbles attached to the surfaces of the

glass beads. This weighed quantity of solids is then added to the flow loop via the stand

tank while the water is circulating. It should be noted that the solids bulk concentration

of the glass beads is determined from the volume of the weighed quantity divided by the

total volume of the flow loop. Complete mixing of the solids in the system is ensured
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when the variation of the pressure drops in the flow loop becomes insignificant. After

the pressure drops in the test sections stabilise, the pressure drop data for the two-phase

mixture is acquired following the same approach discussed above for the pure water case.

The solids concentration was increased by adding more solids and the flow rate-pressure

drop measurements were repeated until the flow loop had to be shut down at the end of the

work day.

To salvage the glass beads, the mixture was collected into a barrel and the solids were

separated by wet sieving through a mesh. To avoid plugging the line by shutting down

prior to removal of the solids, water was simultaneously fed through the stand tank while

the mixture was being discharged via the drain into the barrel. This process was continued

until the fluid discharging from the drain was free of solids. The drain valve was then

closed and the supply of water terminated. The flow loop was then flushed and emptied.

The glass beads were air dried over several days so that they could be reused. The drying

was necessary in order to provide a better estimate of bulk concentration during loading of

the solids into the flow loop.

3.4 Solids Velocity Profiles Measured with the L-Probe

As noted in Section 3.1, detailed concentration measurements with the L-probe were ulti-

mately abandoned due to inconsistencies in the liquid conductivity. However, limited data

for the solids velocity was acquired. The solids velocity profiles for the upward flow of 0.5

mm glass beads at bulk concentrations of 5% and 25% in water are shown in Figures 3.4

and 3.5, respectfully. Additional solids velocity profiles that were acquired for the 0.5 mm

and 2.0 mm glass beads are plotted in Appendix B. In the figures, V is the bulk velocity (the

mixture velocity measured with the electromagnetic flow meter) and Uus refers to the mean

solids velocity calculated from the measured solids velocity profile. The general trend of

the profiles resembles those obtained in the previous study of McKibben (1992). The data

for the 2.0 mm glass beads was not realistic. As noted in Section 3.1, the conductivity

probe was eroded by the particles, which rendered it unusable for the later experiments.
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Figure 3.4: Solids velocity profiles for vertical upward flow of 0.5 mm glass beads at bulk
solids concentration of 5% in water: (a) bulk velocity = 2 m s−1 and (b) bulk velocity = 4
m s−1.
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3.5 Analysis of Pressure Drop Measurements in the Flow Loop

Considering the definition of the mixture density (see equation (2.2)), the solids bulk con-

centration in the upward or downward (Csx = Csu or Csd) flow directions can be calculated

from

Csx =
ρ− ρf

ρs − ρf

, (3.2)

where ρ = ρmu or ρmd; the subscripts u and d denote upward flow and downward flow. The

values of ρmu and ρmd represent the densities in the upward and downward flow directions,

respectively. Their values affect the magnitude of the pressure drop in the upward and

downward flow sections and depend on the slip velocity in these sections. The slip velocity

depends upon the volume flow rate of the mixture, solids properties, and solids loading.

From equation (2.1) and using Figure 3.6, the upward and downward flow pressure

drops are
Pu1 − Pu3

L
= ρmug +

4τwu

D
(3.3)

and
Pd1 − Pd3

L
= −ρmdg +

4τwd

D
, (3.4)

In the pressure sensing lines, the hydrostatic pressure drop - of only the fluid - connecting

the differential pressure transducers to the flow loop is

P2 − P3

L
= ±ρfg,+ for upward flow and − for downward flow. (3.5)

Since the pressure sensing lines that connect the pressure transducers to the pipeline contain

the carrier fluid, the measured pressure gradient calculated by subtracting equation (3.5)

from (3.3) for the upward flow section (Ferré and Shook, 1998), and (3.4) for the downward

flow section are
∆P

L

∣∣∣
upflow

=
Pu1 − Pu2

L
= (ρmu − ρf) g +

4τwu

D
(3.6)

and
∆P

L

∣∣∣
downflow

=
Pd1 − Pd2

L
= − (ρmd − ρf) g +

4τwd

D
. (3.7)
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It should be noted that the wall shear stresses τwu and τwd act in the opposite direction to the

flow and are always considered positive. The equations also illustrate the two contributions

to the pressure drop for fully-developed flow, friction, and gravity.
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Figure 3.6: Schematic of pressure drop measurement sections and connecting tubing (a)
upward test sections and (b) downward flow test sections.

52



www.manaraa.com

From equations (3.3) and (3.4), the average pressure drop in the upward and downward

sections of the flow loop can be expressed as

∆P

L

∣∣∣
average

= 0.5

(
∆P

L

∣∣
upflow

+
∆P

L

∣∣
downflow

)

= 0.5

(
(ρmu − ρmd) g +

4

D
(τwu + τwd)

)
.

(3.8)

In the scenario where the bulk solids concentrations in the upward and downward flow sec-

tions are different, the gravitational pressure drop would affect the relationship between the

wall shear stresses in the flow test sections and the average pressure drop. Under such con-

ditions, one would require knowledge of the respective solids bulk concentrations in the test

sections to determine the wall shear stresses accurately. If the difference in mixture density

is neglected, i.e. assuming negligible particle-fluid slip in the upward and downward flow

directions, then the average pressure drop (equation (3.8)) becomes

∆P

L

∣∣∣
average

= 0.5

(
∆P

L

∣∣
upflow

+
∆P

L

∣∣
downflow

)
=

4τw
D

(3.9)

and the flow loop wall shear stress τw = 0.5(τwu + τwd) can be determined. The wall shear

stress values are discussed in Section 3.6.2.

Under zero velocity slip conditions, the mean solids concentration and hence, the

mixture densities in the upward and downward flow sections will the same. The average

mixture density in the upward and downward flow sections can be calculated by considering

the difference between equations (3.3) and (3.4):

ρmu + ρmd = 2ρf +
1

g

[(
∆P

L

∣∣
upflow

− ∆P

L

∣∣
downflow

)
+

4

D
(τwd − τwu)

]
. (3.10)

If one assumes that the wall shear stresses in the upward and downward flow sections are

equal, the average mixture density in the flow loop can be obtained from

ρm = 0.5 (ρmu + ρmd) = ρf +
0.5

g

(
∆P

L

∣∣
upflow

− ∆P

L

∣∣
downflow

)
. (3.11)
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3.6 Pressure drops in upward and downward flow sections

Figure 3.7 shows the measured pressure drop for upward and downward flow measured

as a function of the bulk velocity for the liquid-solid flow with the 0.5 mm glass beads.

Figure 3.7a shows that the pressure drop in the upward flow direction, represented by equa-

tion (3.3), depends on both the mean velocity and the mean solids concentration. The data

show the expected trend of increasing pressure drop as the bulk velocity increases due to

increased shear at high velocity. Although the present study is different from previous work

in terms of the particle properties and the range of bulk velocity considered, the dependence

of the pressure drop on solids bulk concentration, observed in previous studies by Shook

and co-workers (for example, Ferré and Shook (1998); Shook and Bartosik (1994)) and re-

cently by Matousek (2002), is also evident. The work of Ferré and Shook (1998) involved

the use of water or ethylene glycol as the carrier fluids and glass beads of diameter 1.8 mm

and 4.6 mm as the particles in 40.27 mm diameter pipe. The range the the bulk veloci-

ties in the work of Ferré and Shook (1998) was from approximately 3.5 ms−1 to 7.5 ms−1.

Shook and Bartosik (1994) used sand, polystyrene, and PVC particles in water within the

particle diameter range of 1.37 mm and 3.4 mm. Pipe diameters of 26 mm and 40 mm were

used and the bulk velocity was between approximately 2 ms−1 and 7 ms−1. In the study

of Matousek (2002), flows with sand particles of 0.12 mm, 0.37 mm, and 1.85 mm, as well

as mixtures of 0.37 mm +0.12 mm and 1.85 mm + 0.12 mm in water in a 150 mm diameter

pipe were investigated. Three angles were considered; horizontal, vertical and -30o. The

range of the mean mixture velocity ranged between 2 ms−1 and 8 ms−1.

From Figure 3.7a, it can be deduced that as the solids bulk concentration is increased,

the pressure drop increased in part by an upward shift proportional to ρmu. Compared with

the previous studies mentioned above, lower mixture velocities (less than 3.0 m s−1) were

attained in the present work. The Cs = 45% measurements were repeated and similar

results were obtained as shown in Figures 3.7a and 3.7b. Figure 3.7b shows the pressure

drop measured as a function of the bulk velocity for the flow with the 0.5 mm glass beads in

the downward flow section of the flow loop. Recall that, the downward pressure drop can be
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defined using equation (3.7) and the downward shift in its value is proportional to the value

of ρmd. Again, the expected relationship between the pressure drop and the bulk velocity

is evident. The pressure drop in Figure 3.7b exhibits a downward shift as the solids bulk

concentration is increased. Quantitatively, the pressure drop in the downward flow section

is lower than the values in the upward flow section. This can be attributed to either the

relative values of the mean solids-phase concentration in the downward and upward flow

sections or the effect of concentration on the frictional pressure drop. The pressure drop

data presented in Figures 3.7 and 3.8 consist of gravitational and frictional contributions.

In addition, the frictional pressure drop is also partly determined by the value of the solids

concentration at the wall.

Figure 3.8 shows the pressure drop data for flow with the 2.0 mm glass beads. Over-

all, the pressure drop for the 0.5 mm and the 2.0 mm glass beads in water show similar

dependence on bulk velocity and solids bulk concentration.

The average concentration in the upward and downward sections of the flow loop can

be calculated from the difference in the upward and downward pressure drops measure-

ments (see equation (3.11)). This equation assumes that τw is the same for the upward and

downward flows. The difference between the nominal solids bulk concentration Csn (i.e.

solids loaded into the flow loop) and that calculated from the upward and downward pres-

sure drop measurements Csc for the 5% and 40% concentrations and 0.5 mm and 2.0 mm

glass beads are shown in Figure 3.9. The percentage difference lies within ±20%. For both

particle sizes, the percentage difference increased with velocity V for 5% concentration

and decreased for 40% bulk concentration. A positive percentage difference indicates that

the average solids-phase concentration in the upward and downward test section is higher

than the nominal solids-phase concentration based on the amount of solids added to the liq-

uid. Without the actual mean solids concentration data in the upward and/or downward test

sections, it would be difficult to explain the reason for the positive percentage difference. A

negative percentage difference could be explained by particles trapped in parts of the flow

loop.
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Figure 3.7: Measured pressure drop for flow of 0.5 mm glass beads-water mixture in the
53 mm diameter vertical pipe: (a) upward flow section and (b) downward flow section.
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53 mm diameter vertical pipe: (a) upward flow section and (b) downward flow section.
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flow and those estimated using equations (3.11) and (2.2), and the measured pressure drops.

3.6.1 Average pressure drop

Figure 3.10 shows the average of the upward and downward flow pressure drops (i.e. the

average pressure drop given by equation (3.8)) versus the bulk velocity for the liquid-solid

flow with the 0.5 mm and 2.0 mm glass beads. It should be noted that without direct

measurements of the solids concentration in the upward and downward flow sections, it is

difficult to estimate the effect of the net gravitational pressure drop (i.e. (ρmu − ρmd) g in

equation (3.8)) on the average pressure drop.

The data for the 0.5 mm and 2.0 mm glass beads at 0%, 5%, and 40% is compared

using Figures 3.10a and 3.10b. In both figures, the pressure drops for the flows at 5%

solids bulk concentration are identical to that for the flow with only water (i.e. 0% solids

bulk concentration). On the other hand, the pressure drop for flow of the 0.5 mm glass

beads at 40% solids bulk concentration deviates from that for the 2.0 mm at velocities less

than 3 m s−1. For the flow of 0.5 mm glass beads (Figure 3.10a), the average pressure

drop increases at high solids bulk concentration, particularly Cs > 35%, for similar bulk
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velocities. For the 2.0 mm glass beads (Figure 3.10b), the data for the single-phase and

liquid-solid flows at solids bulk concentration of 5% and 10% fall on the same curve. The

average pressure drop for flow at solids bulk concentration of 40% is slightly higher than

that for the single-phase flow for the range of bulk velocities reported.
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Figure 3.10: Average pressure drop in the flow loop for flow of glass beads-water mixture
in the 53 mm diameter vertical pipe: (a) 0.5 mm glass beads, and (b) 2.0 mm glass beads.
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3.6.2 Wall shear stresses

Figure 3.11a shows the wall shear stress τw plotted against the bulk velocity for 0.5 mm

glass beads in the upward flow test section of the flow loop. The values of τw were

calculated from the measured pressure drop using equation (3.3) and the overall solids

bulk concentration in the flow loop. The use of the bulk solids concentration to deter-

mine the wall shear stress has been employed in previous studies (Ferré and Shook, 1998;

Shook and Bartosik, 1994). As pointed out in Section 3.6.1 for the pressure drop, Figure

3.11 shows that the wall shear stress is essentially the same as for single-phase flow at the

lowest solids concentration of 5%. At higher solids bulk concentrations, the wall shear

stresses deviate from those measured for the single-phase flow as the bulk velocity de-

creases implying a dependence on concentration that becomes more distinct at lower mean

velocities. This can further be explained using Figures 3.4 and 3.5. At high bulk velocity,

lower slip velocity between the particles and the liquid. The mean solids concentration

in the upward and downward flow sections is similar and, hence, equal to the solids bulk

concentration in the flow loop. Therefore, the gravitational pressure drop is estimated well

from using the bulk concentration loaded into the loop. This implies that the gravitational

pressure drop estimated from the measurements is similar in both the upward and down-

ward flow sections. Based on this, one can infer that the values of the wall shear stress at

high bulk velocities in Figure 3.11 are not significantly dependent on concentration. At low

bulk velocities, for example in Figure 3.11a, high slip velocity occurs due to the density

difference between the particles and the liquid. The solids mean concentration in the up-

ward flow direction will be expected to be higher due to the aforementioned slip velocity

than the corresponding value in the downward flow section. For the upward flow case for

example, the plotted wall shear stress in Figure 3.11a includes extra (i.e. undetermined)

gravitational contribution to the pressure drop that is inherent in the shear stress.

In support of the above discussion, one can see from Figures 3.5a and 3.5b that the

slip velocity in the upward flow section is qualitatively apparent. The solids mean velocity

computed from the profiles in Figures 3.5a and 3.5b are 1.55 m s−1 and 3.91 m s−1. How-
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Figure 3.11: Wall shear stress for flow of 0.5 mm glass beads-water mixture in the 53 mm
diameter vertical pipe: (a) upward flow section and (b) downward flow section.
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ever, the absence of the phasic concentration data makes it difficult to quantify the exact

magnitudes of the slip velocity in the flow sections. Such quantitative arguments will aid

in calculating the extra pressure drop contribution hidden in the measured wall shear stress

as a result of the slip velocity in the flow sections. Figure 3.11b shows the wall shear stress

data for the 0.5 mm glass beads in the downward flow test section based on equation (3.4).

The wall shear stress data obtained in the downward test section is similar to that of the

upward test section except that the deviation extends to higher velocities. However, the de-

viation in the wall shear stress at higher solids bulk concentration is less pronounced than

that measured in the upward flow test section at lower bulk velocities.

Figure 3.12a shows the wall shear stress for the 2.0 mm glass beads-water mixture

flows for 0%, 5%, 10%, and 40% solids bulk concentrations. For the larger particles, the

wall shear stresses for the mixture flows are more similar to that for single-phase flow. In

Figure 3.12b, the downward flow wall shear stresses for the 2.0 mm particles are similar

to those observed in the upward flow test section at Cs = 5% and 10%. At the highest

concentration of Cs = 40%, the effect of concentration is reminiscent of that noted for the

case of the smaller glass beads.

3.7 Summary

In this chapter, an experimental study of water slurries of glass beads is presented. Mea-

surements for the pressure drop and estimates for the wall shear stress in the upward and

downward test sections of a circulating flow loop are reported. The average pressure drop

in the flow loop was also presented. The results obtained show that the pressure drops as

well as the wall shear stresses increase with increasing velocity. The effect of particle size

is mixed. The data from both test sections exhibited the generally expected trend. From

the present work, and as noted in other studies (see for example, Ferré and Shook, 1998),

the bulk concentration in the upward and downward flow sections is required to determine

the wall shear stress. In conclusion, the measurements presented in the present study is

incomplete in terms of measured parameters. This is consistent with previous studies and
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Figure 3.12: Wall shear stress for flow of 2.0 mm glass beads-water mixture in the 53 mm
diameter vertical pipe: (a) upward flow section and (b) downward flow section.
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further reveals lack of information for numerical simulations. Thus, for vertical flows of

particulate slurry flows where significant slip velocity is expected, effort must be made to

obtain velocity and concentration distributions of at least one phase.
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CHAPTER 4

TWO-FLUID MODEL FORMULATION

4.1 Introduction

The governing equations for momentum and mass transport used in this study are pre-

sented in this chapter. A two-step averaging technique is used to derive the governing

equations for the two-fluid model. The method involves both an ensemble averaging

technique (Enwald et al., 1996) and a concentration-weighted averaging technique to ac-

count for concentration fluctuations. Details of the procedure are presented starting with

the ensemble-averaged transport equations of mass and momentum. The concentration-

weighted time-averaging process is then applied to the ensemble-averaged equations to

obtain equations for the conservation of mass and momentum. Closure relations for the in-

teraction terms common to each phase are discussed followed by those for the constitutive

equations for the phasic stress tensors. Finally, a general overview of the phasic boundary

conditions is presented.

4.2 Derivation of Governing Equations

4.2.1 Local instantaneous equations

The main governing equations for the two-fluid model are the mass and momentum trans-

port equations. The local instantaneous conservation equation is derived for a general con-

trol volume V, see Figure 4.1, through which a flow property ψα of the phase α in a two-

phase mixture is transported (Enwald et al., 1996). For this control volume shared by the

two phases, an interface of area Aint(t) and velocity uint
i exists between the two phases;

the subscript i is used here to indicate an arbitrary direction of the interface velocity. The
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Phase α = 1: u1i, 
�

1(t) Phase α = 2: u2i, 
�

2(t) 

Interface = int: uint, 
�int(t) 

Figure 4.1: Fixed control volume with two phases with moving interface.

following integral balance can be written for a fixed coordinate system for the mixture:

2∑

α=1




d

dt

∫

Vα(t)

ραψαdV


 =

∫

Aint(t)

ΩintdA+

2∑

α=1


−

∫

Aα(t)

ραψα(uα in i)dA +

∫

Vα(t)

ραΩαdV −
∫

Aα(t)

Jα in idA


 .

(4.1)

In equation (4.1), the term on the left-hand side is the time rate of change of ψ in the

control volume Vα(t), the portion of V occupied by α. On the right-hand side, the first term

is the generation of ψ due to an interfacial source term Ωint; the second term represents

the convective flux of ψ across the surface of Vα(t) at a velocity uα i; the third term is the

production of ψ due to the source term Ωα; and the fourth term represents the molecular

flux Jα i, where n i is the outward-pointing normal to the interface of Vα(t) occupied by

phase α.
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Using the Leibnitz theorem, the term in the parenthesis on left-hand side of equation

(4.1) is transformed into the sum of a volume integral and a surface integral as

d

dt

∫

Vα(t)

ραψαdV =

∫

Vα(t)

∂

∂t
(ραψα) dV +

∫

Aint(t)

(
ραψαu

intn i

)
dA. (4.2)

Gauss theorem can be used to rewrite the second integration term on the right-hand side of

equation (4.1) as the sum of a volume and a surface integral yielding

∫

Aα(t)

ραψα(uα in i)dA =

∫

Vα(t)

∂

∂xi

(ραψαuα i) dV −
∫

Aint(t)

ραψα(uα in i)dA. (4.3)

Similarly, the last term on the right hand side of the same equation becomes

∫

Aα(t)

Jα in idA =

∫

Vα(t)

∂

∂xi
(Jα in i) dV −

∫

Aint(t)

Jα in idA. (4.4)

Using equations (4.2) through (4.4), equation (4.1) can be rewritten as a volume inte-

gral for the volume occupied by the two phases and a surface integral which expresses the

jump conditions across the interface (see Enwald et al., 1996):

2∑

α=1

∫

Vα(t)

{
∂

∂t
(ραψα) +

∂

∂xi

(ραψαuα i + Jα i) − ραΩα

}
dV−

∫

Aint(t)

{
2∑

α=1

(
ρα[uα i − uint

i ]n iψα + Jα in i

)
+ Ωint

}
dA = 0.

(4.5)

In the present study, no mass transfer is considered. Therefore, the mass transfer per unit

area of interface and time in equation (4.5) is neglected, i.e.

(ρα[uα i − uint
i ]n i) = ṁint

α = 0 (4.6)

The generation of ψα due to an interfacial source term Ωint is also not considered and there-

fore neglected. The integrand in each of the integrals in the remaining terms of equation
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(4.5) must vanish since the equations are valid for all Vα(t) and Aα(t). Therefore, the local

instantaneous conservation equation for a field variable ψα of a phase α can be written in

general form as
∂

∂t
(ραψα) +

∂

∂xi
(ραψαuα i + Jα i) − ραΩα = 0 (4.7)

and the jump condition between the phases at the interface (see equation (4.5) in the flow

is given by
2∑

α=1

Jα inα i = 0. (4.8)

Equations (4.7) and (4.8) are used to obtain the transport equations for mass and momen-

tum.

4.2.2 Ensemble averaging

Considering a point in space which is occupied by a two-phase mixture, only one phase

will be present at any time. The properties of the ensemble average (see Appendix D) are

reviewed in detail by Drew (1983) and include:

〈f + g〉 = 〈f〉 + 〈g〉,

〈f〈g〉〉 = 〈f〉〈g〉,

〈constant〉 = constant,
〈
∂f

∂t

〉
=

∂

∂t
〈f〉,

〈
∂f

∂xi

〉
=

∂

∂xi

〈f〉,

(4.9)

where f and g are any scalar, vector or tensor variables. The averaging process uses

weighted averages. The weighted average of a scalar, vector, or a tensor is given by

〈Ψ〉W = 〈Wψ〉/〈W〉, (4.10)

where W is an arbitrary weighting factor. The flows considered in the present study are

incompressible.
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The presence of that phase is characterized by the phase indicator function, which is

defined as

Xα(r, t) =





1, if r is in phase α at timet

0, otherwise

, (4.11)

where Xα is a discontinuous function at the interface between the phases and its gradient

is a delta-function that is non-zero only at the interface. The average of the phase indicator

function is equivalent to the average occurrence of phase α:

cα = 〈Xα〉, (4.12)

where cα is the concentration of a phase and the angular brackets 〈〉 denote an ensemble

average. A fundamental property ofXα derived by (Drew, 1983; Drew and Passman, 1999)

is
DXα

Dt
=
∂Xα

∂t
+ uint

i

∂Xα

∂xi
= 0. (4.13)

In the averaging process, the term Reynolds decomposition, which is specifically used

in time-averaging process, is employed. Consider a general field variable ψ, we have

ψ = 〈Ψ〉W + ψ′, with 〈ψ′〉 = 0 (4.14)

where the first term on the right-hand side is a weighted mean value and the second term

is the deviation from this mean value. The use of equation (4.14) in the averaging process

results in terms containing correlations of the fluctuating components. These extra terms

are analogous to the Reynolds stress terms for single-phase flows turbulence modelling (cf.

Enwald et al., 1996).

4.2.3 Ensemble-averaged equations

The ensemble-averaged equations are derived by first multiplying the general instantaneous

equation, i.e. equation (4.7), by the phase indicator function Xα and then performing the
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averaging procedure. Thus, from equation (4.7) we have

〈
Xα

∂

∂t
(ραψα) +Xα

∂

∂xi
(ραψαuα i + Jα i) −XαραΩα

〉
= 0. (4.15)

Considering each term in equation (4.15) and employing the product rule for the differential

terms, the following relations are obtained:

〈
Xα

∂

∂t
(ραψα)

〉
=

〈
∂

∂t
(Xαραψα)

〉
−
〈

(ραψα)
∂

∂t
Xα

〉
, (4.16)

〈
Xα

∂

∂xi
(ραψαuα i)

〉
=

〈
∂

∂xi
(Xαραψαuα i)

〉
−
〈

(ραψαuα i)
∂

∂xi
Xα

〉
(4.17)

and 〈
Xα

∂

∂xi
Jα i

〉
=

〈
∂

∂xi
(XαJα i)

〉
−
〈
Jα i

∂

∂xi
Xα

〉
. (4.18)

Substituting these relations into equation (4.15) and rearranging yields

〈
∂

∂t
(Xαραψα)

〉
+

〈
∂

∂xi
(Xαραψαuα i)

〉
+

〈
∂

∂xi
(XαJα i)

〉
− 〈XαραΩα〉

=

〈
(ραψα)

∂

∂t
Xα

〉
+

〈
(ραψαuα i)

∂

∂xi

Xα

〉
+

〈
Jα i

∂

∂xi

Xα

〉
.

(4.19)

Multiplying equation (4.13) by ραψα and averaging the result yields

〈
ραψα

∂

∂t
Xα

〉
+

〈
ραψαu

int
i

∂

∂xi
Xα

〉
= 0, (4.20)

which when subtracted from the right hand side of equation (4.19) simplifies to

〈
∂

∂t
(Xαραψα)

〉
+

〈
∂

∂xi
(Xαραψαuα i)

〉
+

〈
∂

∂xi
(XαJα i)

〉

− 〈XαραΩα〉 =

〈
ραψα(uα i − uint

i )
∂

∂xi
Xα

〉
+

〈
Jα i

∂

∂xi
Xα

〉
.

(4.21)
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With no mass transfer between the phases, the averaged conservation equation becomes

〈
∂

∂t
(Xαραψα)

〉
+

〈
∂

∂xi
(Xαραψαuα i)

〉
+

〈
∂

∂xi
(XαJα i)

〉

− 〈XαραΩα〉 =

〈
Jα i

∂

∂xi
Xα

〉
.

(4.22)

Averaged continuity equation

From equation (4.14), let ψ = 1 and Jα i = Ω = 0 and substitute into equation (4.22). After

utilizing equation (4.9), the mass balance for incompressible flow becomes

∂

∂t
(ρα〈Xα〉)

︸ ︷︷ ︸
C1

+
∂

∂xi
(ρα〈Xα (Uα i + u′α i)〉)

︸ ︷︷ ︸
C2

= 0. (4.23)

The transient term (term C1) becomes

Term C1 ≡ ∂

∂t
(ρα〈Xα〉) =

∂

∂t
(cαρα). (4.24)

Term C2 can be expanded as follows:

Term C2 ≡ ∂

∂xi
(ρα〈XαUα i〉 + ρα〈Xαu

′

α i〉) . (4.25)

Applying the averaging properties to each term,

〈Uα i〉 =
〈XαUα i〉
〈Xα〉

≡ 〈XαUα i〉
cα

(4.26)

and

〈u′α i〉 =
〈Xαu

′

α i〉
〈Xα〉

≡ 〈Xαu
′

α i〉
cα

= 0, (4.27)

and then substituting back into (4.25) yields

Term C2 ≡ ∂

∂xi
[cαρα (Uα i + 〈u′α i〉)] =

∂

∂xi
(cαραUα i) . (4.28)
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From equations (4.24) and (4.28), the ensemble-averaged continuity equation is written as

∂

∂t
(cαρα) +

∂

∂xi
(cαραUα i) = 0. (4.29)

Note that the angle brackets 〈〉 in the averaged equation (i.e. equation (4.29)) are dropped

for convenience. This also the case for the momentum equation below.

Averaged momentum equation

Setting ψ = Uα i, Jα i = pα − Tα ij , and Ω = gi, where pα is the pressure within a phase,

Tα ij is the stress due to viscous effects, and gi is the acceleration due to gravity, in equation

(4.22) leads to

∂

∂t
[ρα 〈Xα (Uα i + u′α i)〉]

︸ ︷︷ ︸
M1

+
∂

∂xj

[
ρα

〈
Xα (Uα i + u′α i)

(
Uαj + u′αj

)〉]

︸ ︷︷ ︸
M2

=

− ∂

∂xi
(〈Xα(pα − Tα ij)〉)

︸ ︷︷ ︸
M3

− ρα 〈Xαgi〉︸ ︷︷ ︸
M4

−
〈

(pαδij − Tα ij)
∂

∂xi
Xα

〉

︸ ︷︷ ︸
M5

.

(4.30)

In equation (4.30), the quantity in the square brackets of term M1 is identical to the cor-

responding term C2 in the continuity equation. Following equations (4.25) through (4.28),

we have

Term M1 ≡ ∂

∂t
[ρα 〈Xα (Uα i + u′α i)〉] =

∂

∂t
(cαραUα i) . (4.31)

The convection term is represented by term M2. Expanding and transforming this term

using the Reynolds-type decomposition results in

Term M2 ≡ ∂

∂xj

[
ρα

〈
Xα (Uα i + u′α i)

(
Uαj + u′αj

)〉]

=
∂

∂xj

[
ρα

(
〈XαUα iUαj〉 +

〈
XαUα iu

′

αj

〉
+ 〈XαUαju

′

α i〉 +
〈
Xαu

′

α iu
′

αj

〉)] (4.32)
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The first term in equation (4.32) is phase averaged, whereas the second and third terms

vanish. The fourth term is a stress tensor term denoted by τ pif
ij , which is phase averaged as

τ pif
ij = −

ρα〈Xαu
′

α iu
′

αj〉
〈Xα〉

= −
ρα〈Xαu

′

α iu
′

αj〉
cα

. (4.33)

Substituting into equation (4.32), the final form for term M2 is obtained:

Term M2 ≡ ∂

∂xj
(cαραUα iUαj) −

∂

∂xj
(cατ

pif
ij ). (4.34)

The stress term, M3, is obtained using equation (4.10) and by decomposing into mean and

fluctuating parts (i.e. pα = pα + p′α i and Tα ij = τα ij + τ ′α ij), we have

Term M3 ≡ ∂

∂xi

(〈Xα(pα − Tα ij)〉)

=
∂

∂xi

(〈
Xα

[
(pα + p′α i) − (τα ij + τ ′α ij)

]〉)
.

(4.35)

Equation (4.35) simplifies after expanding the terms and averaging to

Term M3 ≡ ∂

∂xi
[cα(pα − τα ij)]. (4.36)

The gravity term, M4, is similarly averaged to yield

Term M4 ≡ ρα 〈Xαgi〉 = cαραgi. (4.37)

The last term on the right hand side of equation (4.30), term M5, is the momentum

source due to interaction between phases. The ensemble average of term M5 is expressed

as

Term M5 ≡ 〈Mα i〉 =

〈
(pαδij − Tα ij)

∂

∂xi
Xα

〉
. (4.38)

The averaged pressure and stress tensor P int
α and τ int

α ij , respectively, at the fluid-solids inter-

face are introduced to separate the mean field effects from the local effects in the interface

momentum source term. Expressing the interfacial pressure in terms of its mean and fluc-

73



www.manaraa.com

tuating components, we have

pα = P int
α + pint ′

α ; (4.39)

a similar expression for the interfacial stress is

Tα ij = τ int
α ij + τ int ′

α ij . (4.40)

Introducing equations (4.39) and (4.40) into equation (4.38) and applying the averaging

rules results in the following:

Term M5 ≡
〈
pαδij

∂

∂xi
Xα

〉
−
〈
Tα ij

∂

∂xi
Xα

〉

= P int
α δij

〈
∂

∂xi
Xα

〉
− τ int

α ij

〈
∂

∂xi
Xα

〉
+

〈
(p′αδij − τ ′α ij)

∂

∂xi
Xα

〉

= P int
α δij

∂cα
∂xi

− τ int
α ij

∂cα
∂xi

+

〈
(p′αδij − τ ′α ij)

∂

∂xi
Xα

〉

=
∂

∂xi

(
cαP

int
α δij

)
− cα

∂

∂xi
P int

α δij − τ int
α ij

∂cα
∂xi

+M ′

α i,

(4.41)

whereM ′

α i is the averaged momentum transfer between the phases, after the mean pressure

and stress terms have been subtracted:

M ′

α i =

〈
(p′αδij − τ ′α ij)

∂

∂xi

Xα

〉
. (4.42)

The term M ′

α i represents local surface forces, which are due to interfacial-averaged pres-

sure and shear stress deviations.

Substituting equations (4.31), (4.34), (4.36), (4.37), and (4.41) into equation (4.30)

and rearranging yields the ensemble-averaged momentum equation for a phase α given by

equation (4.43)

∂

∂t
(cαραUα i) +

∂

∂xj
(cαραUα iUαj) = −cα

∂

∂xi
P int

α +
∂

∂xj

[
cα

(
Tαij + τ pif

α ij

)]

− ∂

∂xj

[
cα
(
Pα − P int

α

)
δij
]
− τ int

α ij

∂cα
∂xi

+ cαραgi +M ′

α i.

(4.43)
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This form of the momentum equation is valid for both the liquid and solids phase after mak-

ing some important assumptions; also the closures for each phase are physically different

for some of the terms. Equations (4.29) and (4.43) are frequently used as the governing

equations for multiphase flows. Equations in this form have been presented in several stud-

ies with applications to fluidization (e.g. Enwald et al., 1996; Peirano and Leckner, 1998)

and sediment transport (e.g. Drew, 1975; Greimann and Holly, 2001).

In equation (4.43), P int
α and τ int

α ij are the averaged interfacial pressure and stress ten-

sor, respectively introduced to separate the mean field effects from the local effects in the

interface momentum source term. In the traditional ensemble averaging procedure, τ pif
α ij is

often considered a Reynolds stress due to turbulence in a phase as a result of the decompo-

sition used during the averaging process (see for example Enwald et al., 1996). As such, it

is used to represent the correlations of velocity fluctuations in regions smaller than several

particle diameters. In the present study, τ pif
α ij is physically interpreted differently by relat-

ing it to stresses resulting from small-scale interaction (Hsu et al., 2003) between the fluid

and solids phases (e.g. pif ≡ phase-induced fluctuation). To this end, τ pif
α ij is regarded as

a small-scale Reynolds stress, which is identified with particle-induced turbulence for the

fluid phase or turbulence in a dilute region for the solids phase. Further discussion of τ pif
α ij

is provided in Section 4.4.3.

4.3 Double-Averaged Equations

To physically account for momentum transport due to turbulent fluctuations on the scale of

mean flow variations, a second averaging process is applied to the ensemble-averaged equa-

tions derived in the preceding section. This is achieved by time averaging equations (4.29)

and (4.43). The double averaging procedure has also been recommended to remove discon-

tinuity in first derivatives of field variables resulting from single averaging procedures (e.g.,

see Ren et al. (1994)). Except for the additional closure requirements, the double-averaged

transport equations are essentially unchanged in form. For constant material properties

of both phases, the concentration-weighted averaging technique is similar to the so-called

75



www.manaraa.com

Favré-averaging process (Burns et al., 2004; Hsu et al., 2003). To begin, the concentration

field is decomposed into a mean and fluctuating part:

cα = cα + c′′α, (4.44)

where cα, cα, and c′′α are the ensemble-averaged, time-averaged, and fluctuating concentra-

tions, respectively; the single prime is associated with large-scale fluctuations. The follow-

ing definition

cαUα i =
1

T

∫ t+T/2

t−T/2

cαUα id(τ) (4.45)

is used so that the phasic concentration-weighted mean velocity is

Ũα i =
cαUα i

cα
. (4.46)

With the above relations, the time-average quantities and the concentration-average of the

field variable Ψα i can be related using the expressions

cαΨα i = (cα + c′′α)(Ψα i + ψ′′

α i) ⇒ Ψ̃α i = Ψα i +
c′′αψ

′′

α i

cα
(4.47)

so that the time-average and concentration-weighted average variables are related by

Ψ̃α = Ψα + ψ̂α i, where ψ̂α i =
c′′αψ

′′

α i

cα
. (4.48)

The quantity c′′αψ
′′

α i represents the transport of phasic concentration by velocity fluctuations

so that the physical effect of ψ̂α i is turbulent dispersion and thus, is modelled as a diffusion

process with an appropriate dispersion coefficient. Equation (4.47) provides the correspon-

dence between the time-averaged and concentration-weighted average variables provided

that c′′αψ
′′

α i can also be measured.

4.3.1 Continuity equation

The concentration-weighted time averaging is performed on the ensemble-averaged equa-

tions to account for the large-scale fluctuations in the flow. For constant density, the left
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hand side of the continuity equations (4.29) becomes

∂

∂t
(cαρα) +

∂

∂xi
(cαραUα i) =

∂

∂t

[
ρα(cα + c′′α)

]
+

∂

∂xi

[
ρα(cα + c′′α)

(
Uα i + u′′α i

)]

=
∂

∂t
(cαρα) +

∂

∂xi

[
ρα

(
cαUα i + c′′αu

′′

α i

)]
.

(4.49)

Using the concentration-weighted process, equation (4.47), the continuity equation reduces

to
∂

∂t
(cαρα) +

∂

∂xi

(
ραcαŨα i

)
= 0. (4.50)

with the additional constraint
2∑

α=1

cα = 1 (4.51)

for mass conservation. Equation (4.50) is similar in form to the ensemble-averaged conti-

nuity equation.

4.3.2 Momentum equation

Applying the concentration-weighted averaging to the momentum equation (4.43) and sim-

plifying terms yields

∂

∂t

(
ραcαŨα i

)
+

∂

∂xj

(
ραcαŨα iŨαj

)
= −cα

∂

∂xi
P

int

α + c′′α
∂

∂xi
P int′

α

+
∂

∂xj

[
cα

(
τα ij + τ pif

α ij

)]
− ∂

∂xj

(
ραcαu′′α iu

′′

αj

)

+ ραcαgi −
∂

∂xj
[cα (Pα − P int

α )]δij − τ int
α ij

∂cα
∂xi

+M ′

α i.

(4.52)

On the left-hand side of equation (4.52), the first and second terms represent the local time

rate of change and the rate of convection, respectively, of linear momentum of phase α per

unit volume. On the right-hand side, the first term is the contribution of the phasic pressure

to the force acting on phase α per unit volume, whereas the second term is the contribution

of the corresponding time-averaged interfacial pressure; P int′

α ≡ P int
α − P

int

α is assumed
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to be an interfacial pressure fluctuation. The third term is comprised of the phasic viscous

(laminar) and small-scale Reynolds (or phase-induced turbulent) stress, the fourth term

denotes the phasic large-scale Reynolds stress, and the fifth term is the gravitational body

force term. All of these stresses contribute to the forces acting on phase α per unit volume.

The sixth term accounts for the difference between the interfacial pressure and the phasic

pressure, and the seventh term is the interfacial averaged viscous stress contribution of

phase α. The last term on the right-hand side of equation (4.52) is the so-called averaged

interfacial momentum exchange or the inter-phase momentum transfer. The inter-phase

momentum transfer term accounts for the inter-phase drag, lateral lift force, virtual mass

force, Basset force, and the wall force. Equations (4.50) and (4.52) are used to represent

the double-averaged phasic continuity and momentum equations.

4.4 Closure Equations

As in the case for single-phase momentum equation for turbulent flows, the closure problem

arises when averaged transport equations for two-phase flows are derived. More terms

require constitutive equations or closures compared to single-phase flows. Some of the

terms on the right-hand side of equation (4.52) require constitutive relations that need to

be interpreted in the context of the contribution to each phase. Prior to discussing the

closure models, the physical mechanisms influencing the different regimes or regions in

liquid-solid slurry flows are considered.

4.4.1 Physical mechanisms in slurry flows

The physical mechanisms discussed here pertain to the use of scaling, intuition, and phe-

nomenological concepts to describe the stresses that contribute to the momentum transport

of liquid-solids mixtures. The regimes considered cover essentially the entire dilute-to-

dense spectrum.

For dilute flows or in the dilute regions of a flow, the distances between particles are

large and particle-particle interaction effects are minimized. The particles in dilute regions
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can be entrained by the flowing fluid and are easily suspended by the fluid turbulence. At

the same time, particularly for large particles that are not easily perturbed by the fluid

turbulence, the inertia of the particle determines the level of concentration. On the basis of

time scales, the inertia effects are determined by the value of β or the Stokes number, St.

In this regime, the suspension mechanism is dominated by the fluid turbulence.

At moderate to high solids concentrations, the average inter-particle distance is small.

Consequently, the solids-phase stresses are generated via particle-particle interactions in

the presence of the interstitial fluid, or due to the enduring contact experienced by the

particles. In the former case, the concept of macro-viscous flow first considered by Bagnold

(1954) comes to mind. The effect of the interstitial fluid on the dynamics of the solids

phase makes the analysis of the stresses more complex. While current understanding of the

interstitial fluid effect is far from complete, the classical study of Bagnold (1954) led him

to introduce the dimensionless Bagnold number expressed by equation (2.8).

At very high solids concentration of heavy particles, flow scenarios with moving or

stationary beds are likely to be encountered. In this case, the fluid turbulence is small, if not

completely absent, in the moving or stationary bed regions. The main mechanism for sus-

pension and momentum transport is the gradient of the solids phase stresses. In the context

of liquid-solid flows, the moving bed regime is analogous to the intermediate flow regime,

whereas the stationary bed regime can be thought of as either a quasi-static (often assumed)

or static flow regime. For the quasi-static flow regime, the frictional forces between the par-

ticles are predominant. The phasic velocities are finite and the concentration gradient in

the bed region would not necessarily be zero in the quasi-static regime. An immobile bed

formation is typically a static flow regime and for this regime, the velocity of the particles

in the bed region is zero and the solids concentration is at maximum packing. Stationary

bed formation is undesirable in the hydrotransport of slurries and accurate models for the

quasi-static or static regime is important to determining efficient operating conditions. In

spite of it being the most common flow regime, little is know about the intermediate flow

regime due to the difficulty in constructing theoretical models (Savage, 1998). As a result,
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the intermediate regime is treated by combining the effects of the rapid granular and quasi-

static flow regimes. For practical coarse-particle slurry flows, all the above regimes often

occur simultaneously. Thus, any modelling of the flow must consider these regimes in their

entirety. An important limitation of this modelling effort is the treatment of the boundaries

between regimes.

4.4.2 Closures common to both phases

4.4.2.1 Momentum transfer term

The interfacial momentum force on the solids equals the opposite of the interfacial mo-

mentum force on the fluids. For the momentum transfer term M ′

α i, we begin from M ′

α i

(equation (4.42)). It is assumed that linear combinations of physical forces such as drag,

lift, added mass, Basset forces, etc can be used to obtain the closure for M ′

α i. In this study,

only the drag force contribution is considered for simplicity. Therefore, the inter-phase

drag term is expressed (Greimann et al., 1999) as

M ′

αi = M ′

αiDrag
=

〈
Xαρs

tp

(
ufi − uint

i

)〉
, (4.53)

where tp is the particle relaxation time. Applying the ensemble averaging process to equa-

tion (4.53) and retaining second order correlations involving Xα, while neglecting higher

order ones yields

M ′

αiDrag
=
csρs

tp

[
(Ufi − Us i) +

1

cs
〈Xαu

′

fi〉
]
. (4.54)

The quantity 〈Xαu
′

fi〉 /cs represents a diffusive flux and is referred to as the drift veloc-

ity. It accounts for the dispersion effect due to the particle transport by the fluid turbu-

lence. Following the theoretical analysis of discrete particles suspended in homogeneous

turbulence performed by Deutsch and Simonin (1991), the diffusive flux can be modelled

as (Greimann and Holly, 2001)

1

cs
〈Xαu

′

fi〉 = −Dfs ij

(
1

cs

∂cs
∂xi

− 1

cf

∂cf
∂xi

)
, (4.55)
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where Dfs ij is a particle diffusion or dispersion tensor. From equations (4.54) and (4.55),

we have

M ′

αiDrag
=
csρs

tp

[
(Ufi − Us i) −Dfs ij

(
1

cs

∂cs
∂xi

− 1

cf

∂cf
∂xi

)]
. (4.56)

Equation (4.56) is modelled after the concentration-weighted time average:

M ′
α iDrag

=
csρs

tp

(
Ũfi − Ũs i

)
− csρs

tp
c′′su

′′

fi −
csρs

tp
Dfs ij

(
1

cs

∂cs
∂xi

− 1

cf

∂cf
∂xi

)
. (4.57)

The particle relaxation time can be express as a function of the inter-phase drag func-

tion β:

tp =
csρs

β
. (4.58)

The inter-phase drag function is modelled with using empirical correlations. The correla-

tion proposed by Richardson and Zaki (1954) for β is usually used (Roco, 1990; Hsu et al.,

2004) for liquid-solid slurry flows or sediment transport simulations. For particulate flows

with a wide range of solids concentration distributions, especially in fluidized bed simu-

lations, those of Wen and Yu (1966) and Gidaspow (1994) are often preferred. For the

flows investigated in this work, the local solids concentration varies over a wide range. In

the present study, the inter-phase drag function β is calculated from equations (2.29) and

(2.30).

The second term in equation (4.57) includes the correlation between the solids phase

concentration fluctuation and the fluid phase velocity fluctuation, which is modelled by a

gradient transport term:

c′′su
′′

fi = −νft
∂cs
∂xi

, (4.59)

where νft is the fluid phase turbulent viscosity, the closure of which is discussed in Section

4.4.4.1.

Presently, the particle diffusion tensor Dfs ij is not very well understood. For non-

81



www.manaraa.com

isotropic cases, Dfs ij can be generalized as

Dfs ij = tfs u ′′

fiu
′′

s i, (4.60)

where kfs = u ′′

fiu
′′

s i is the covariance correlation between the turbulent velocity fluctuations

of the two-phases. This quantity presented via its modelled transport equation is further

discussed in Chapter 5. In equation (4.60), tfs is the interaction time between particle

motion and liquid phase fluctuations if a relative motion exists between the two phases,

and is given by

tfs = Cµ
3kf

2εf

(
1 + Cβ

3|Usi − Ufi|2
2kf

)
−1/2

. (4.61)

The coefficient Cβ is expressed as

Cβ = 1.85 − 1.35cos2θ (4.62)

where θ is the angle between the mean particle and the mean relative velocities (Csanady,

1963). Squires and Eaton (1991) explained the particle diffusion process using two con-

cepts: the crossing trajectory and inertia effects. The crossing-trajectory effect is attributed

to the fact that the particles ‘fall’ out of the fluid phase turbulent eddies. This causes them

to more quickly lose correlation with the surrounding fluid. The crossing trajectory effect

is quantified by the fluid-particle interaction time (see Chapter 5). The inertia effect is due

to the inability of the particles to track exactly the fluid motion. The above effects were

used by Greimann and Holly (2001). Enwald et al. (1996) calculated Dfs ij using

Dfs ij =
1

3
tfskfs. (4.63)

4.4.2.2 Pressure and interfacial stress terms

For liquid-solids flows, the pressure at the liquid-solid interface can be assume to be equal

to that of the liquid-phase. Therefore, a simple constitutive relation would be

P
int

α

∣∣∣
α=f or s

= P f . (4.64)
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In this case, the first term on the right hand side of equation (4.52) becomes

− cα
∂

∂xi
P

int

α

∣∣∣∣∣
α=f or s

= −cα
∂

∂xi
P f . (4.65)

Following Roco (1990) and Roco and Shook (1985), the correlation between c′′α and P int′

α ,

that is the second term on the right hand side of equation (4.52), is neglected.

4.4.3 Solids-phase stress closures

The third, fourth, fifth, and sixth terms, i.e. cs(τs ij + τ pif
s ij ), ρscsu

′′

siu
′′

sj, cs (Ps − P int), on the

right hand side of equation (4.52) require constitutive relations. In the present study, differ-

ent types of closures for the solids-phase stress are investigated in the context of kinetic the-

ory of granular flow. Several methods based on the kinetic theory of dense gases originally

postulated by Chapman and Cowling (1970) have been used to derive constitutive equa-

tions for the solids-phase stresses. The works of Campbell (1990), Jenkins and Richman

(1985), Lun et al. (1984), Peirano and Leckner (1998), and Simonin (1996) are just a few

examples. This modelling approach leads to closure relations that account for the solids

stresses in rapid granular flows. The modelling efforts followed here consider flow mech-

anisms over the dilute-dense spectrum of solids concentration while taking into account

interstitial fluid and frictional effects.

There are a number of models for the solids-phase stresses contributing to kinetic

and collisional effects; the difference between them is mainly in the expressions for the

transport coefficients. The models of Gidaspow (1994) and Lun et al. (1984) using the

kinetic theory approach covers a wide range of solids concentration. These models were

developed for dry granular flows. The models proposed by Peirano and Leckner (1998) are

extensions of those of Jenkins and Richman (1985) to include interstitial fluid effects, and

are essentially limited to dilute flows.

The stresses due to particle-particle interaction are modelled in a way analogous to

the constitutive relation for the molecular stress in a single-phase Newtonian fluid. The
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transport coefficients are, in this case, determined from the kinetic theory of granular flow.

Thus, written in the conventional form, we have

csτs ij = 2µsSs ij +

[(
ξs −

2

3
µs

)
Ssjj − Ps

]
δij , (4.66)

where Ss ij is the strain-rate tensor defined by 2Ss ij = (Us i,j + Usj,i); the transport coeffi-

cients µs and ξs are the solids-phase dynamic and bulk viscosities, respectively; and Ps is

the so-called solids-phase (particle) pressure. The closure equations for µs, ξs, and Ps used

in the present study are provided in Chapter 5.

For dispersed two-phase flows, the average interfacial stress term is often considered

insignificant (Ishii and Mishima, 1984), thus the 7th term in equation (4.52) is

τ int
ij

∂cα
∂xi

≈ 0. (4.67)

In dense particulate flows, additional stresses exist due to friction between particles. These

extra stresses are largely based on the critical state theory of soil mechanics (Jackson,

1983; Roco, 1990; Roco and Shook, 1983). It is assumed that the material of the solids-

phase is non-cohesive but possesses rheological characteristics similar to that in the plastic

regime (Schaeffer, 1987; Tardos et al., 2003). Such characteristics are generally modelled

as

τ f
s ij = P f

s δ ij + F(P f
s , cs)

Ŝs ij√
Ŝs ij : Ŝs ij

, (4.68)

where P f
s is the averaged normal frictional stress or pressure; Ŝs ij = Ss ij−Ss mmδ ij/3 is the

deviatoric part of the strain rate tensor (Srivastava and Sundaresan, 2003); and F(P f
s , cs)

is a function to be specified. Different functional forms of P f
s and F(P f

s , cs) have been

considered in recent studies (Makkawi and Ocone, 2006; Srivastava and Sundaresan, 2003;

Tardos et al., 2003). The stress induced by the fluid flow on the solids-phase (i.e. pit =

phase-induced turbulence) is neglected:

csτ
pif
s ij =· 0. (4.69)
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The eddy-viscosity assumption is used to model the solids-phase turbulent stresses,

i.e.

ρscsu′′siu
′′

sj = 2µstSs ij −
2

3
ρscsksδij . (4.70)

Different models for the eddy viscosity for the solids-phase are used in the present study as

discussed in Chapters 5 and 6.

In the quasi-static rate-independent flow regime, inter-particle stresses arise because

of the friction experienced by particles in enduring contact. Under conditions of high solids

concentration, particles interact with multiple neighbours. The normal and the tangential

forces due to friction effects are the main contributions to the solids-phase stresses and

hence, momentum transport. In many studies where the kinetic-frictional closure is con-

sidered, the modelling process assumes the frictional contribution as an additional stress in

an ad hoc manner. For particulate flows where inter-particle contact is inevitable, as in the

case of flow with a moving or stationary bed, the pressure difference can be used to account

for extra pressure due to contact. Following Drew (1983), we have

Ps = (P int + P f
s ) (4.71)

where P f
s is intuitively assumed to be an extra normal stress due to enduring contact. The

stress term cs (Ps − P int) is, therefore, simplified as

cs (Ps − P int) = P f
s . (4.72)

As noted by Drew (1983), several modellers have used P f
s = P f

s (cs) to model the pressure

difference.

4.4.4 Liquid phase stress closures

For the fluid phase, the effective stress consists of the third and fourth terms in equation

(4.52). Often, the second part of the third term, τ pif
ij is modelled using one of the following

approaches:
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1. As the Reynolds stress (see Enwald et al., 1996) in which case the fourth term in

equation (4.52) does not appear. This approach is usually applied when only the

ensemble-averaging procedure is used,

2. decomposed into particle-induced and shear-induced stress components (for example,

Alajbegovic et al., 1999; Burns et al., 2004), or

3. As the averaged small-scale Reynolds stress generated due to the interaction be-

tween the fluid and the particles or by fluctuations in the particles (Hsu et al., 2004;

Hwang and Shen, 1993). This basis is often unique to the double-averaging tech-

nique and the concept of large-scale fluctuation, where concentration fluctuations are

also introduced (see also Zeng et al., 2005).

Even though this study investigates different two-fluid models, the discussion to follow in

section 4.4.4.1 is tailored towards the third approach.

4.4.4.1 Effective fluid-phase stress tensor

Applying equation (4.52) to the fluid phase, the third term contains the viscous and a

Reynolds-like stress, which is identified as the stress resulting from the small-scale or par-

ticle induced fluctuations. The viscous shear stress of the fluid (liquid phase) is calculated

using the linear stress-strain rate relationship:

cfτfij = cfρfµf

(
∂Ufi

∂xj

+
∂Ufj

∂xi

)
. (4.73)

In dilute flows, the phase-induced turbulence is assumed due to the slip between the fluid

and the particles. The effect of the slip can be characterised by the particle diameter as

the length scale and the relative velocity as the velocity scale (Gore and Crowe, 1989). In

addition, the solids concentration in the dilute regions is low and the effect on the mean

flow is expected to be negligible. For dense flows, where particle-particle interactions are

still dominant, particle-induced turbulence may be included in the fluid phase closure as

discussed by Hwang and Shen (1993).
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The fluid-phase turbulent stress is modelled using the eddy viscosity model:

ρfcfu′′fiu
′′

fj = cf

[
µft

(
∂Ufi

∂xj
+
∂Ufj

∂xi

)
− 2

3
ρfkfδij

]
, (4.74)

where the eddy viscosity of the fluid phase µft is calculated using the two-equation kf − εf

turbulence model

µft = Cµρf
k2

f

εf

. (4.75)

In equation (4.75), Cµ is a model constant (see Table 4.1); kf is the fluid phase turbulence

kinetic energy; and εf is the dissipation rate of kf . For the fluid phase, the sixth term in

equation (4.52) vanishes.

4.4.4.2 Fluid-phase two-equation turbulence model

In this work, the transport equations for kf and εf are solved to compute µft. By definition,

the fluid-phase turbulence kinetic energy is

kf =
1

2cf
cfu

′′

f u
′′

f . (4.76)

The transport equation for kf is derived by subtracting the governing equation of the mean

kinetic energy of the instantaneous fluid phase velocity from that of the kinetic energy of

the concentration-weighted mean velocity. Dropping the ˜ symbol and using some of the

closure equations in the preceding sections, we have Hsu et al. (2004)

∂

∂t
(cfρfkf) +

∂

∂xj

(cfρfUfjkf) = Tf ij
∂Ufi

∂xj

+
∂

∂xj

[
τfijcfu′′fi − ρf

1

2
cfu′′fiu

′′

fiu
′′

fi − cfu′′fiP
′′

f

]

+ P ′′

f

∂cfu
′′

fi

∂xi
− cfτfij

∂u′′fi
∂xi

− csρs

tp
c′′su

′′

fi(Ufi − Usi) − cfρf
csρs

tp
csu′′fi(u

′′

fi − u′′s i)

(4.77)

Following single-phase flow arguments (Wilcox, 2002), equation (4.77) is transformed to

the standard convection-diffusion form. On the right-hand side, the first term is the produc-
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tion term, where Tf ij = cfτfij + ρfcfu′′fiu
′′

fj is the effective stress. The second term is treated

as the diffusion term:

∂

∂xj

[
τfijcfu

′′

fi − ρf
1

2
cfu

′′

fiu
′′

fiu
′′

fi − cfu
′′

fiP
′′

f

]
=

∂

∂xj

[
cf

(
µf +

µft

σk

)
∂kf

∂xj

]
, (4.78)

where σk is the Prandtl number of the kf equation. Following Roco and Shook (1983), the

third term is ignored. The fourth term is the dissipation rate of the fluid phase turbulence

kinetic energy kf , which is given by

εf =
1

cfρf
cfτfij

∂u′′fi
∂xi

. (4.79)

The correlations in the last term in equation (4.77) is modelled as

Πkf
=
csρs

tp
(−2cfkf + kfs + (Ufi − Usi)Udi) . (4.80)

where Udi is the drift velocity defined as

Udi = tfs
kfs

3

(
1

cf

∂cf
∂xi

− 1

cs

∂cs
∂xi

)
. (4.81)

Thus, the modelled transport equation for kf is given by

∂

∂t
(cfρfkf) +

∂

∂xj

(cfρfUfjkf) =
∂

∂xj

[
cf

(
µf +

µft

σk

)
∂kf

∂xj

]

+
csρs

tpρf

µft
∂cf
∂xj

(Uif − Uis) + Tf ij
∂Ufi

∂xj

− ρfcfεf + cfρfΠkf

(4.82)

Following a similar approach, the transport equation for εf can be obtained as follows:

∂

∂t
(cfρfεf) +

∂

∂xj
(cfρfUfjεf) =

∂

∂xj

[
cf

(
µf +

µft

σε

)
∂εf

∂xj

]
+ Cε1

εf

kf
Tf ij

∂Ufi

∂xj

− Cε2
εf

kf
cfρfεf + Cε3

εf

kf

csρs

tpρf
µft

∂cf
∂xj

(Uif − Uis)

− Cε3
εf

kf
cfρfΠkf

(4.83)
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Equations (4.82) and (4.83) are the generic forms used to calculate kf and εf in the present

study. The specific closure terms and relations used for the flows calculated in this work

for vertical and horizontal flows are discussed in Sections 5.1 and 6.2, respectively.

With the exception of Cε3, the numerical coefficients of the fluid-phase k − ε turbu-

lence model provided in Table 4.1 are those calibrated for single-phase flows. Appropri-

ate values for the constants, including that for Cε3, for the case of two-phase flows are

still the subject of debate (Bolio et al., 1995; Rizk and Elghobashi, 1989; Simonin, 1996;

Squires and Eaton, 1994) and the focus of recent investigations (Zhang and Reese, 2001,

2003b).

Table 4.1: Model constants in the fluid-phase k − ε turbulence model.

Cµ Cε1 Cε2 Cε3 σk σε

0.09 1.44 1.92 1.2 1.0 1.3

4.5 Boundary Conditions

Boundary conditions have to be imposed at the inlets, outlets and bounding walls of the

flow domain. The inlet and outlet boundary conditions are discussed in Chapter 5. The

total wall shear stress is a very useful parameter in two-phase flow system design. Thus,

in systems where head losses are considered important, the correct formulation of the wall

boundary condition, particularly in the two-fluid formulation, is crucial. To this end, dis-

cussion and formulation of phasic wall boundary conditions is presented in the following

sections. The wall function formulation is adopted for the fluid phase, while some of the

existing formulations for the solids-phase are presented.
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4.5.1 Fluid-phase wall boundary conditions

In turbulent flows, the wall-function formulation typically uses a logarithmic relation for

the near-wall velocity in inner coordinates (y+
fn
∼= 30 − 200):

U+ =
Ufn

uτ

=
1

κ
ln(Ey+

fn), (4.84)

where

y+
fn = ρuτyfn/µ and uτ =

√
τfw/ρ. (4.85)

The subscript fn refers to the first node from the wall; uτ is the friction velocity; Ufn is

the velocity parallel to the wall at a distance of yfn from the wall; y+
fn is the dimensionless

distance from the wall; and E = 9.793 is the log-layer constant. The values of kfn and εfn at

the first node are,

kfn =
u2

τ√
Cµ

and εfn =
u3

τ

κyfn

=
Cµ

3/4k
3/2
fn

κyfn

. (4.86)

This formulation does not consider the effect of the solids-phase on the fluid at the wall.

The effect of the solids-phase can be accounted for through the inter-phase drag term to

reflect the effect of turbulence interaction between the phases (Benyahia et al., 2005).

4.5.2 Solids-phase wall boundary conditions

Several approaches are used for the solids-phase wall boundary condition in the literature.

Considering particle-wall interactions of neutrally buoyant wax spheres, Bagnold (1954)

proposed dispersive stress relations for the ‘macro-viscous’ and ‘grain-inertia’ regimes, re-

spectively, and developed a solids-phase wall shear stress, which can be recast in Newto-

nian form using equation (2.7). As noted in Chapter 2, Shook and Bartosik (1994), cal-

culated the solids-phase velocity gradient at the wall using a stress-strain relation. They

assumed that the velocity gradient of the solids at the wall is equal to that of the liquid. The

solids mean concentration Cs was used to calculate the linear concentration λL. Consid-

ering the grain-inertia regime, they modified equation (2.7) to the form given by equation

(2.10). Shook and Bartosik (1994) and Bartosik (1996) adopted these approximations be-

90



www.manaraa.com

cause local solids velocity and concentration measurements were not obtained during their

study. For the present work, the solids-phase velocity gradient is explicitly calculated to

determine the solids-phase wall shear stress.

Eldighidy et al. (1977) proposed a slip condition for the solids-phase wall boundary

condition in the form

Us

∣∣
w

= −λslip

(
∂Us

∂y

) ∣∣∣∣∣
w

, (4.87)

where, Us

∣∣
w

is the particle velocity at the wall, y is the wall-normal direction, and the

coefficient λslip is known as the slip parameter. Different approaches were used to estimate

λslip for the two-fluid application by Ding and Gidaspow (1990) and Ding and Lyczkowski

(1992). In the study by Ding and Gidaspow (1990), λslip was assumed to be the mean

distance between particles and estimated it from

cs
4π

3

(
λslip

2

)3

=
π

6
dp

3 (4.88)

to obtain

λslip =
dp

c
1/3
s

(4.89)

The estimated expression for λslip in the study of Ding and Lyczkowski (1992) was ob-

tained more rigorously via the kinetic theory approach. Ding and Lyczkowski (1992) de-

fined λslip in the same way as Ding and Gidaspow (1990) and obtained an expression for

λslip in the form

λslip =

√
3π

24

dp

csg0

. (4.90)

The radial distribution function g
0

is given by

g
0

=

(
1 − cs

Cmax

)
−2.5Cmax

. (4.91)

In equation (4.91), Cmax = 0.63 is the maximum volume fraction. The slip parameter devel-

oped by Ding and Lyczkowski (1992) was used by Ding et al. (1993) to simulate laminar

flow of a liquid-solid mixture using a multi-fluid model.
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The preceding discussions on the treatment of the solids-phase wall boundary condi-

tion provide a simplistic approach to its formulation and numerical implementation. How-

ever, as noted above, the mechanisms involved in the particle-wall interaction are phys-

ically more complex. The heuristic approach proposed by Hui et al. (1984) was used

by Johnson and Jackson (1987) and Johnson et al. (1990) to account for particle-wall fric-

tion. More rigorous derivations of the solids-phase boundary conditions, which are ex-

pected to be physically amendable to particle-wall mechanism, have been attempted in sev-

eral studies (Benyahia et al., 2005; Jenkins and Louge, 1997; Jenkins and Richman, 1986;

Louge, 1994; Richman, 1988). Johnson and Jackson (1987) formulated the following

boundary conditions for granular materials in a plane shear flow:

n · Ts
Us

|Us|
+

√
3φπcsρsgo

|Us|T 1/2
s

6Cmax
+ τ f

sntanϕ = 0; (4.92)

for the solids-phase velocity and

ΓTs

∂Ts

∂r

∣∣∣
w

=

√
3πcsρsgo

T
1/2
s

6Cmax

[
φ|Us|2 −

3Ts

2
(1 − e2w)

]
(4.93)

for the granular temperature, where ew is the restitution coefficient at the wall and 0 ≤ φ ≤
1 is known as the specularity coefficient; ΓTs

is the coefficient of the granular temperature

equation. When the frictional term in equation (4.92) is neglected, φ = 0 leads to the

free-slip (or smooth wall) boundary condition and a value of φ = 1 defines a rough wall

condition (cf. Benyahia et al., 2005). The specularity coefficient is characteristic of the

fraction of diffuse particle-wall collisions.

4.6 Summary

The transport equations for particulate two-phase flows have been presented in this chapter.

A general overview of the closure relations for the terms that require constitutive equations

were also discussed. The specific transport equations, closure models, and modelled trans-

port equations for auxiliary quantities used for simulations in this work are discussed in

detail in Chapter 5, where vertical flow simulations are reported, and in 6, the horizontal
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pipe flow calculations are performed. Due to the limitations of the user, the simulations

were limited to the models that were simple to implement.
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CHAPTER 5

VERTICAL FLOW SIMULATIONS

In this chapter, the model predictions of local flow distributions and frictional head losses

for liquid-solid vertical flows made using the commercial CFD software ANSYS CFX-4.4

are presented. As noted in the preceding chapter, specific constitutive relations for the

solids-phase stress and associated auxiliary transport equations are investigated. Specifi-

cally, three types of closures for the solids-phase stress are considered. Prediction of solids-

phase velocity and concentration profiles are compared with measured data for high solids

bulk concentration flows. For the frictional head loss, the effects of various solids-phase

wall boundary condition models are investigated for liquid-solid vertical flows.

5.1 Two-Fluid Model Equations

For isothermal two-phase flows where both phases are considered turbulent with no inter-

phase mass transfer, equations (1.1) to (1.5), which are simplified forms of equations (4.50)

and (4.52) are used to describe the mass and momentum transport in each phase. For

all the simulations, the fluid-phase effective stress is calculated using the kf − εf model

(equations (4.77) and (4.83)) with the wall function formulation. The treatment of the

effective stress for the solids-phase for the different models investigated is discussed in

Section 5.1.1. Different models are available for the solids-phase stress closure in the

literature. The three common two-fluid models, often referred to as kf − εf − ks − εs,

kf − εf − ks − εs − Ts, and kf − εf − ks − kfs, are investigated in the present study; kfs is

the fluid-solids covariance (cf. Peirano and Leckner, 1998).
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5.1.1 The kf − εf − ks − εs model

The kf − εf − ks − εs model considered in this study is the baseline model for two-phase

turbulent flows in the CFX-4.4 code. The essential assumption in this case is that the

turbulence model for the fluid can be adopted for the solids-phase. It should be noted that,

for this model, the last term in equations (4.82) and (4.83) does not appear and hence, is

not considered. The effective solids-phase stress tensor in this case is modelled in terms of

collision and kinetic (or ‘turbulent’) contributions, i.e.,

Ts ij = Psδ ij + τs ij + τst ij . (5.1)

The solids-phase stress due to collision is expressed in terms of a normal component Ps

and a shear component τs ij . The normal component of the collisional stress is given in the

form of a simple solids pressure model (Bouillard et al., 1989)

∂Ps

∂xi
= Go [exp (−C

M
{cs − Cmax})]

∂cs
∂xi

, (5.2)

where Go is known as the reference elastic modulus; C
M

is the compaction modulus; and

Cmax is the maximum packing concentration of the particles. The effect of equation (5.2)

is to prevent the calculated solids concentration from exceeding the maximum packing in

dense regions for a given nominal particle size. Following Bouillard et al. (1989), values

of Go = 1 Pa and C
M

= 600 were used in equation (5.2).

The collisional shear stress τs ij is expressed in the same way as for the fluid-phase

molecular shear stress. However, unlike the fluid-phase for which the laminar viscosity

is constant, the solids-phase viscosity depends strongly on the transport mechanisms af-

fecting the solids-phase. In the literature, the solids viscosity is typically modelled in

one of three ways: constant solids viscosity (Sun and Gidaspow, 1999; Gómez and Milioli,

2001), empirical or semi-empirical correlations (Enwald et al., 1996), or from the kinetic

theory (Chapman and Cowling, 1970). While kinetic theory leads to a specific constitutive

relation for the solids viscosity (see below), the use of negligible solids viscosity is also
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quite common. For the present study, the collisional shear stress τs ij is expressed in the

same way as for the liquid-phase, where the dynamic viscosity was set to a very small

value of 10−8 Pa·s following the aforementioned studies.

The solids-phase turbulent stress τst ij is modelled using a k − ε type two-equation

model similar to that of the fluid-phase. The default model constants of the k−ε turbulence

model in ANSYS CFX-4.4, given in Table 4.1, were retained in the simulations.

5.1.2 The kf − εf − ks − εs − Ts model

For the kf − εf − ks − εs − Ts model, the solids-phase is assumed to experience small- (Ts

equation) and large-scale (ks equation) fluctuations. For this model, the kf − εf − ks − εs

part is solved using the approach described in the preceding section. Since the small-scale

solids-phase fluctuations are attributed to collisions at the particle scale, the effects are

accounted for via the kinetic theory of granular flow. Thus, the solids-phase stress due to

particle-particle collision is modelled using equation (4.66). In terms of the kinetic theory

of granular flows (e.g. Lun et al., 1984), the relations for the solids-phase dynamic and bulk

viscosities and pressure depend, among other parameters, on the granular temperature Ts,

which must be computed.

Using the constitutive relations of Lun et al. (1984), the solids-phase dynamic viscos-

ity is written as

µs = µs dil
(g

1
+ g

2
) , (5.3)

where µs dil
is calculated from

µs dil
=

5π1/2

96
dpρsT

1/2
s ; (5.4)

and g
1

and g
2

are given by

g
1

=
1

η (2 − η) g
0

[
1 +

8

5
η (3η − 2) csg0

]
(5.5)
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and

g
2

=
8cs

5 (2 − η)

[
1 +

8

5
η (3η − 2) csg0

]
+

768

25π
ηc2sg0

, (5.6)

where

η =
1

2
(1 + e). (5.7)

The bulk viscosity is

ξs =
8

3
csρsdpg0

η

(
Ts

π

)1/2

(5.8)

and the solids-phase pressure is given by

Ps = csρsTs [1 + 4csg0
η] . (5.9)

The modelled form of the transport equation for Ts obtained from the granular flow kinetic

theory (Bolio et al., 1995; Lun et al., 1984) is

∂

∂xj

(csρsUsjTs) =
∂

∂xj

(
Γ

Ts

∂Ts

∂xj

)
− 2Ts ij

∂Usi

∂xj

− 2csρs

tfs

(
3Ts − u ′

fku
′

sk

)
+ γ. (5.10)

In equation (5.10), the diffusion coefficient Γ
Ts

is given by

Γ
Ts

=
25π1/2

128
dpρsT

1/2
s (g

3
+ g

4
) , (5.11)

where

g
3

=
8

η (41 − 33η) g
0

[
1 +

12

5
η2 (4η − 3) csg0

]
; (5.12)

and

g
4

=
96

5 (41 − 33η) g
0

[
1 +

12

5
η2 (4η − 3) csg0

+
16

15π
η (41 − 33η) csg0

]
. (5.13)

For the simulations results presented in this work, models for u ′

fku
′

sk was not implemented.

The dissipation of the solids kinetic energy via collision in equation (5.10) γ is expressed

as

γ =
12 (1 − e2) g

0

ds

√
π

csρsTs. (5.14)
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The treatment of the additional transport equations are the same for the kf − εf − ks − εs

model.

5.1.3 The kf − εf − ks − kfs model

For this model, the fluid-phase transport equations for the kf − εf model as given by equa-

tions (4.82) and (4.83) are solved. For the solids-phase, a two-equation type model repre-

sented here as the ks − kfs model is soled to compute the constitutive relation for the stress

tensor. The model investigated here is that proposed by Peirano and Leckner (1998). The

solids-phase stress tensor for this case is similar to that given by equation (5.1) but the ef-

fective solids-phase viscosity is treated as a sum of collisional and kinetic contributions. It

should be noted that in some studies, the kinetic part of the solids-phase viscosity is referred

to as either streaming (e.g, van Wachem et al., 2001) or turbulent (e.g, Peirano and Leckner,

1998) viscosity. Thus, we have

µs = µsc + µst, (5.15)

where the expressions for the collisional and turbulent viscosity are

µsc =
8

5
csρsg0

η

(
µst + ds

√
2ks

3π

)
, (5.16)

and

µst =
2

3
ρs

[
tfs
tp
kfs + (1 + csg0

A) ks

] [
2

tp
+

B

tc

]
−1

. (5.17)

The parameters A and B are given by

A =
2

5
(1 + e) (3e− 1) and B =

1

5
(1 + e) (3 − e) . (5.18)

and tfs is defined by equation (4.61). The quantity tc is the inter-particle collision time

defined as

tc =
π1/2

24csgo
dp

(
3

2ks

)1/2

. (5.19)

Note that in the above formulation, the isotropic relation between the granular temperature

and the solids-phase turbulence kinetic energy introduced in Chapter 4 is assumed. The
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bulk viscosity and the solids pressure are given by equations (5.8) and (5.9), respectively.

Clearly, the solids-phase stress depends on the turbulence kinetic energy ks of the

solids-phase and kfs. Therefore, transport equations for ks and kfs are required. The mod-

elled equation for ks is

∂

∂xj
(csρsUsjks) =

∂

∂xj

[
cs (Ksc + Kst)

∂ks

∂xj

]
− Ts ij

∂Usi

∂xj
− 2csρs

tfs
(2ks − kfs)

−csρs
1 − e2

3tc
ks,

(5.20)

where Ksc and Kst are the collisional and kinetic diffusivities, respectively. The collisional

diffusivity is given by

K
sc

= csg0
(1 + e)

(
6

5
Kst +

4

3
dp

√
2ks

3π

)
(5.21)

and the kinetic diffusivity is defined by

Kst =

[
3

5

tfs
tp
kfs +

2

3
(1 + csg0

C) ks

] [
9

5tp
+

D

tc

]
−1

, (5.22)

where C = 3(1 + e)2(2e− 1)/5 and D = (1 + e)(49 − 33e)/100. The closed form of the

transport equation for kfs (Enwald et al., 1996) is

∂

∂xj
(csρsUsjkfs) =

∂

∂xj

(
cs
µkfs

σkfs

∂kfs

∂xj

)
− csρsu′′fiu

′

sj

∂Usi

∂xj
− csρsu′′fju

′

si

∂Ufi

∂xj

−csρs

tp
[(1 + Scρ) kfs − 2kf − 2Scρks] − csρs

kfs

tfs
.

(5.23)

In equation (5.23), µkfs
= ρskfstfs/3 is known as the fluid-solids turbulent viscosity; Scρ =

csρs/cfρf is referred to here as the phasic-weighted density ratio; and u′′fju
′

si is the fluid-

solids velocity correlation tensor modelled using the eddy viscosity assumption:

− ρsu
′′

fiu
′

sj = µkfs

(
Sfsij −

1

3
Sfsijδij

)
− 1

3
kfsδij . (5.24)
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In the correlation u′′fiu
′

sj , u′′fi is defined as the fluctuating velocity of the liquid phase seen by

the particles (Peirano and Leckner, 1998). Recall also that u′sj is the solids-phase velocity

fluctuation. The fluid-solids strain rate tensor is defined by

Sfsij =
∂Ufi

∂xj
+
∂Usj

∂xi

. (5.25)

5.1.4 Boundary Conditions

Uniform profiles were used at the inlet for the solids-phase velocity and concentration. The

level of these quantities was set to the mean values reported in the experimental study

of Sumner et al. (1990). Details of the data of Sumner et al. (1990) are summarized in

Section 5.1.5.1. There were no measurements for the liquid-phase velocity so its value

was set by assuming no slip between the phases at the inlet. The inlet concentration for

the liquid was specified using the constraint in equation (1.3). Fully developed flow is

assumed at the outlet of the pipe. The flow was treated as axi-symmetric and a symmetric

boundary condition was specified at the axis of the pipe. For the kf − εf − ks − εs model, a

no-slip boundary condition using the wall function formulation presented in Section 4.5.1

was imposed at the wall for the liquid-phase, while a free slip condition was specified for

the solids-phase. For simulations using the kf − εf − ks − εs − Ts and kf − εf − ks − kfs

models, the wall function formulation was also applied for the liquid-phase and equations

(4.92) and (4.93) were implemented for the solids-phase velocity and granular temperature,

respectively.

5.1.5 Numerical Simulations

Steady-state simulations for upward flow of water-sand particle mixtures in a 0.04 m diam-

eter vertical pipe were performed using a two dimensional grid in CFX-4.4. A pipe length

of 4.0 m was considered. After a series of preliminary simulations, a grid system consisting

of 50 × 40 control volumes distributed uniformly in the axial direction and non-uniformly

in the radial direction was found to be sufficient to obtain a grid-independent solution (see

Section 5.1.6.1). In addition to the boundary conditions, equations (2.29) and (2.31) and

the models discussed in sections 5.1.2 and 5.1.3 were implemented via user-Fortran rou-
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tines. While implementation of user-routines in CFX-4.4 is sometimes straightforward, the

case of physical model testing requires a detailed knowledge of how the code works. For

example, in some cases, the user-routines have to be bounded to avoid divergence. Often

the user, not the developer, is essentially working with a black box. A sample command file

is provided in Appendix E. The simulation was considered converged when the normalized

residuals were reduced to a value of 10−4. Typical CPU time for the calculations on a PC

at 2.66 GHz was about 3.3 × 103 s for the kf − εf − ks − εs model simulations, 3.2 × 104

s for those with the kf − εf − ks − εs − Ts model, and 3.04 × 104 s for those with the

kf − εf − ks − kfs model.

5.1.5.1 Experimental data used for comparison

The numerical simulations were performed and completed prior to performing the exper-

imental work presented in Chapter 3. Therefore, the numerical results discussed herein

were compared with previous experimental results. Sumner et al. (1990), measured solids-

phase concentration and velocity distributions in turbulent upward flow of slurries in ver-

tical pipes using an L-shaped conductivity probe. A similar probe built into the wall was

used to obtain the concentration and solids-phase velocity at the wall. The experiments

were conducted in two vertical loops with pipes of diameters D = 0.025 m and 0.04 m

using two types of particles, plastic and sand. Two sizes of plastic particles were used and

four sizes were considered for the sand. The mean concentration ranged between 10% and

50% by volume. Axial velocities in the range of 3-7 m/s and 2-4 m/s were attained in the

0.025 m and 0.04 m pipes, respectively. For these measurements, Sumner (1992) reported

an error of 1.5%, which increased with increasing particle diameter, when the mean of the

solids-phase velocity distribution was compared with the bulk velocity measured by the

magnetic flow meter. The error in particle concentration was found to be ±2.5% for parti-

cle diameters smaller than the sensor electrode spacing. The distance between the pair of

sensor electrodes was 10 mm and the measurement domain of each pair was reported to be

about 1 mm. For particles larger than the electrode spacing, ±5% precision was reported.

The experimental conditions chosen for the present simulations are shown in Table 5.1.
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Table 5.1: Properties of liquid and solids-phase, flow conditions and CFX-4.4 model pa-
rameters/constants.

Description Symbol Value
Constituent properties

fluid density ρf 998 kgm−3

fluid viscosity µf 10−3 Pa·s
solids density ρs 2650 kgm−3

solids viscosity µs 10−8, 0.25 Pa·s and model
particle diameter dp 0.47, 1.7 mm

Inlet conditions

mean velocity of fluid Uf 2.6 ∼ 2.8 ms−1

volume fraction of fluid (1 − Cs) 0.722 < (1 − Cs) < 0.915
turbulence intensity TI 0.1
turbulence kinetic energy of fluid kf 3(UfTI)

2/2

dissipation rate of fluid εf 0.093/4k
3/2
f /(0.007dp)

mean velocity of solids Us 2.6 ∼ 2.8 ms−1

volume fraction of solids Cs 0.085 < Cs < 0.278
turbulence kinetic energy of solids ks 3(UsTI)

2/2

dissipation rate of solids εs 0.093/4k
3/2
s /(0.007dp)

granular temperature Ts 3ks/2
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Also shown in Table 5.1 are values of the constant solids viscosity investigated for the case

of the kf − εf −ks− εs model. The value of Cs is the bulk concentration of the solids-phase

reported in the experimental studies. The simulation matrix shown in Table 5.2 identifies

the specific experimental data chosen for the simulations. In the present study, attention is

focus on modelling issues, hence only a few select test cases are considered. A detailed

parametric investigation of constant solids viscosity using baseline models in CFX-4.4 can

be found in Krampa-Morlu et al. (2004). The use of the constant solids viscosity produced

mixed results. Extension of the best model to a wider range of flow conditions is deferred

to future studies.

Table 5.2: Simulation matrix

Particle Solids Solids
Run diameter bulk conc. mean velocity

dp (µm) Cs (%) Usav (m/s)

1 470 8.7 2.6
2 470 27.8 2.6
3 1700 8.5 2.8
4 1700 17.7 2.8

5.1.6 Simulation Results and Discussion

5.1.6.1 Single-phase flow

Preliminary simulations of single-phase flow for a range of Reynolds numbers between

ReD ≈ 4.0 × 104 and 2.0 × 105 based on the mean velocity and pipe diameter were

performed to test implementation of the code and verify the numerical grid. The predicted

velocity U , at the end of the pipe, plotted against distance from the wall normalized by

the pipe radius R is shown in Figure 5.1a. Using grids of 20, 40, and 60 control volumes

(CV) non-uniformly distributed in the wall-normal direction, one can see that the results

are similar, particularly for 40 CV and 60 CV. However, compared to the 1/7-power law

velocity profile, the calculated velocities are higher in the middle part of the half pipe.
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Figure 5.1: Velocity predictions in outer and inner coordinates for single-phase pipe flow:
(a) Outer coordinates and (b) Inner coordinates.
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The velocity profile in inner coordinates matched the log-law as expected in Fig-

ure 5.1b using the 40 CV grid. The first grid point in Figure 5.1b is located at y+(=

yuτ/ν) ≈ 30. For smooth wall conditions, the predicted friction factors were within ap-

proximately 3% of those given by the Churchill (1977) equation and are in good agreement

with Prandtl’s equation as shown in Figure 5.2. This indicates that the grid is appropriate

for the range of Reynolds numbers considered.
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Figure 5.2: Friction factor prediction for water in upward vertical smooth pipe flow. Com-
parison between correlation, experimental data, and predictions
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5.1.6.2 Solids-phase velocity and concentration distributions

In this section, the predicted results for the solids-phase velocity and solids concentration

are discussed for the models presented above. For the case of the kf − εf − ks − εs model,

the two values of constant solids viscosity in Table 5.1 were investigated for the flows with

the 470 µm particles.

Flow with 470 µm diameter particles

Figure 5.3 shows the numerical results for the 470 µm particles at a mean concentration

of approximately 8.7%, which corresponds to Run 1 in Table 5.2. Overall, the predicted

solids-phase velocity profiles shown in Figure 5.3a compare well to the experimental data.

As shown in Figure 5.3b, the solids-phase velocity predicted with the lower solids viscosity

trends toward the measured data point near the wall, whereas the velocity calculated with

the higher solids viscosity remains higher near the wall of the pipe. Similar effects of

the solids viscosity were observed for the other conditions in Table 5.2. The solids-phase

velocity was slightly under-predicted for the case of the kf − εf − ks − εs model with µs =

0.25 Pa·s in the core region. The solids-phase velocity predictions by the kf−εf−ks−εs−Ts

and the kf − εf − ks − kfs models lie between those predicted by the kf − εf − ks − εs

model using two values of the solids-phase viscosity in the core of the pipe. Both of these

models also produced a higher value of the solids velocity close to the wall. The solids-

phase velocity results shown in Figure 5.3 indicate the importance of the closure for the

solids stress tensor. There is a clear, and small distinction between the predictions using

a constant particle viscosity and those for which the kinetic theory of granular flow was

employed. This is also observed in the other flow conditions presented below.

Figure 5.4 compares the predictions and the experimental data for the concentration

distribution for Run 1. Overall, Figure 5.4a shows that the concentration profiles compare

fairly well with the experimental data for y/R ≥ 0.2. The concentration prediction close

to the wall is re-plotted in Figure 5.4b. Except for the kf − εf − ks − εs model using

µs = 10−8 Pa·s, the predicted profiles exhibit an overshoot near the wall and then become
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Figure 5.3: Comparison of predicted and measured particle velocities for dp = 470 µm
particles at Cs = 8.7% (Run 1): (a) cross-section profile, and (b) near-wall solids-phase
velocity distribution.
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Figure 5.4: Comparison of predicted and measured solids-phase concentration for dp = 470
µm particles at Cs = 8.7% (Run 1): (a) cross-section profile and (b) near-wall solids-phase
concentration distribution.
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relatively flat over most of the pipe cross-section. The kf − εf − ks − εs model with µs =

10−8 Pa·s predicted a higher particle concentration very close to the wall than the other

models. However, the concentration predicted at the wall by all models is much less than

that measured at the wall.

The predicted results for Run 2 (i.e. particles with dp = 470 µm and Cs = 27.8%)

are compared to the experimental data in Figure 5.5. The shapes of the velocity profiles

shown in Figure 5.5a are similar to those in Figure 5.3a. The profile obtained using the

kf − εf − ks − εs model with µs = 10−8 Pa·s nearly matches the experimental data across

the entire pipe cross-section. The solids-phase velocity was slightly under-predicted by the

kf − εf − ks − εs model with µs = 0.25 Pa·s and the kf − εf − ks − εs − Ts model in the

core region; both of these models actually produced identical velocities for y/R ≥ 0.2. At

the wall, the velocity predicted by the models, with the exception of the kf − εf − ks − εs

model with µs = 10−8 Pa·s, was clearly higher than the experimental data.

The concentration profiles for Run 2 are given in Figure 5.5b. For the predicted pro-

files, the trends are similar to those observed in Figure 5.4a except that the overshoots close

to the wall are more pronounced. In general, the predicted profiles are almost uniform for

most of the pipe cross-section, whereas the experimental data, apart from the near-wall

region, exhibited a steady, albeit slight, decrease in concentration moving from the wall to

the pipe centreline.

Flow with 1700 µm diameter particles

The numerical results for the 1700 µm particles for Run 3 (i.e. particles with dp = 1700

µm and Cs = 8.5%) are shown in Figure 5.6. For this case, only predictions by the kf −
εf − ks − εs model with µs = 10−8 Pa·s, kf − εf − ks − εs − Ts, and the kf − εf − ks −
kfs models are discussed. For the larger particles, both the predicted and experimental

velocity profiles are flatter. However, the predicted velocity profiles exhibit distinctly more

curvature than the experimental profile, with the largest deviation towards the centreline

of the pipe. It is interesting to note that the present observation is opposite to that made
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Figure 5.5: Comparison of predicted and measured results for dp = 470 µm particles at
Cs = 27.8% (Run 2): (a) solids-phase velocity and (b) particle concentration.
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Figure 5.6: Comparison of predicted and measured results for dp = 1700 µm particles at
Cs = 8.5% (Run 3): (a) solids-phase velocity and (b) particle concentration.
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by Krampa-Morlu et al. (2004) when default software settings were chosen. Close to the

wall, the predicted velocity almost matches the measured velocity for the kf − εf − ks − kfs

model. The solids-phase velocity in the region close the wall is slightly under-predicted by

the kf − εf − ks − εs model and the kf − εf − ks − εs − Ts model produced a higher value.

Away from the wall and for y/R ≥ 0.2, the kf − εf − ks − εs − Ts produced less deviation

compared to the other two models.

In Figure 5.6b, the predicted particle concentration profiles are significantly different

than the measured profile. The discrepancy between the measured and predicted concentra-

tions is most pronounced in the core region of the pipe. The predicted profiles are flat in

the core region, and also show a sharper transition to the wall value than the experimental

profile. The overshoot in the predicted profiles near the wall is less pronounced compared

to those observed for the smaller particles in Figure 5.4.

The results for Run 4 (i.e. particles with dp = 1700 µm and Cs = 17.7%) are shown

in Figure 5.7. For the larger particles, the profiles are flat for the liquid-solid flow at 17.7%

solids bulk concentration as discussed for Figure 5.6a. Except for the kf − εf −ks − εs −Ts

and kf − εf − ks − εs − kfs models, which performed well in the region y/R ≤ 0.2, the

predicted solids-phase velocity profiles did not closely follow the experimental data. In

Figure 5.7b, the predictions for the concentration profiles are similar to those in Figure

5.6b for a mean concentration of 8.5%. Again, there is a significant discrepancy between

the predictions and experimental result. The strong variation in concentration across the

pipe observed for the larger particles is simply not captured by the predicted profiles.

5.1.6.3 Turbulence kinetic energy and viscosity distributions

The predictions for the velocity and concentration profiles depend on the closure models

used. In the present study, only closure models for the solids-phase stress tensor are inves-

tigated. Since experimental data is limited to the mean flow fields of solids velocity and

concentration (those for the turbulence field are not available for the slurry flows), only the

model predictions of the turbulence kinetic energy and the eddy viscosity are presented.
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Figure 5.7: Comparison of predicted and measured results for dp = 1700 µm particles at
Cs = 17.7% (Run 4): (a) solids-phase velocity and (b) particle concentration.
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The predicted results for the turbulence kinetic energy and eddy viscosity are shown in

Figures 5.8 through 5.10.

Flow with 470 µm diameter particles

Figure 5.8 shows the predicted radial distributions of the turbulence kinetic energy for

single-phase water flow (k), and for the water-sand flow (kf), as well as the solids-phase

turbulence kinetic energy (ks) for Run 1. Figures 5.8a, 5.8b, and 5.8c show the predictions

for the kf − εf − ks − εs, kf − εf − ks − εs − Ts, and kf − εf − ks − kfs models, respectively.

The k profile for the single-phase flow attains a peak value very near the wall, and then

drops gradually toward the axis of the pipe which is prototypical of turbulence in a wall-

bounded flow. In Figure 5.8a, the kf profile calculated using the kf − εf − ks − εs model

is similar to the single-phase profile, except that it drops more sharply near the wall. The

value of kf for the slurry is generally lower than k for the single-phase flow, indicating the

attenuation of turbulence in the liquid. For the solids-phase, ks shows a relatively smooth

profile which increases from almost zero at the wall to a peak value located at y/R ≈ 0.1,

away from the wall. In Figure 5.8b, the calculated kf profile by the kf − εf − ks − εs − Ts

model is much lower compared to Figure 5.8a. The solids-phase turbulence kinetic energy

in this case exhibits a more gentle slope close to the wall and peaks at a higher value (about

30% higher than in Figure 5.8a). The peak value is also further away from the wall when

compared with the ks profile in Figure 5.8a.

Towards the centre of the pipe, the value of ks is significantly higher relative to that

predicted by the kf − εf − ks − εs model. Note that, in the present study, no turbulence

modulation model was introduced in the kf − εf − ks − εs and kf − εf − ks − εs − Ts

models and, therefore, no additional source or sink terms are present in the phasic turbulent

transport equations. Calculations with the kf−εf−ks−εs model use a constant solids-phase

laminar viscosity, whereas in the case of the kf − εf − ks − εs − Ts model, the solids-phase

laminar viscosity is modelled from the kinetic theory of granular flows with the constitutive

equations given by equations (5.3) to (5.6).
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Figure 5.8: Predictions of turbulence kinetic energy for dp = 470 µm particles at Cs =
8.7% (Run 1): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c)
kf − εf − ks − kfs model.
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The comparative study of the order of magnitude of constant solids viscosity in liquid-

solid flow simulations by Krampa-Morlu et al. (2004) indicated that local variation of the

solids viscosity is required for improved prediction of concentration and velocity distribu-

tions. The kf profile predicted by the kf − εf − ks − kfs model, which provides this feature,

is shown in Figure 5.8c. The shape of both profiles is similar to those shown in Figures

5.8a and 5.8b; the magnitude is discussed below using Figure 5.9a.

To more clearly compare the kf and ks values predicted by the three models, the results

are plotted again in Figures 5.9a and 5.9b. The single-phase results for kf are also included

in Figure 5.9a. Figure 5.9a shows that the liquid-phase turbulence as characterised by the

magnitude of kf is attenuated. The extent of attenuation is greatest over the entire pipe

cross-section in the case of the kf − εf − ks − εs − Ts model. The kf profile predicted by

the kf − εf − ks − kfs model lies between those predicted by the kf − εf − ks − εs and

kf − εf − ks − εs − Ts models in the region 0.1 ≤ y/R ≥ 0.6. Outside this region, the

kf value predicted by the kf − εf − ks − kfs model is identical to that predicted by the

kf − εf − ks − εs − Ts model for y/R < 0.1 and to that of the kf − εf − ks − εs model for

y/R > 0.6. The predictions of ks are shown in Figure 5.9b. While the shape of the profiles

is generally similar, the magnitudes for the three models are very different. Close to the

wall of the pipe, the peak value of ks for the kf − εf − ks − kfs model is about twice as high

as for the baseline kf −εf −ks−εs model. The peak of ks for the kf −εf −ks−εs−Ts model

lies between the peak value of the other two models. In the region closer to the centre of

the pipe, the ks value for the kf − εf − ks − kfs model decreases more rapidly, giving the

lowest prediction at the centre.

Figure 5.10 shows the corresponding distribution of the liquid-phase eddy viscosity

predicted for single-phase flow (νt) and liquid-solid flow (νft), as well as the distribution of

the solids-phase eddy viscosity (νst) for Run 1. The liquid-phase eddy viscosity is almost

the same as for the single-phase flow, which indicates that the effective viscosity of the

liquid-phase is almost unaffected by the presence of the solids at a 8.7% mean concentra-

tion. For two phase flow, the behaviour of νst is similar to that of νft for the two models
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Figure 5.9: Predictions of phasic turbulence kinetic energy for dp = 470 µm particles
at Cs = 8.7% (Run 1): (a) liquid-phase turbulence kinetic energy, and (b) solids-phase
turbulence kinetic energy.
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Figure 5.10: Predictions of eddy viscosity for dp = 470 µm particles at Cs = 8.7% (Run
1): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c) kf − εf − ks − kfs

model.
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shown in Figures 5.10a and 5.10b, but the value of νst is significantly higher for most of the

pipe cross-section. For the kf − εf −ks − εs model (Figure 5.10a), the effective viscosity of

the solids-phase is dominated by the solids-phase turbulence and the effect of the laminar

solids kinematic viscosity (10−8/ρs m2s−1) is insignificant in the core region of the pipe.

The observation in the case of the kf − εf − ks − εs − Ts model (Figure 5.10b) is similar,

although the laminar viscosity of the solids-phase, i.e. equation (5.3), is derived from the

kinetic theory of dry granular flows. The solids-phase laminar viscosity was found to be

very small, O(10−4), compared with the values of νst reported in Figure 5.10b. In Figure

5.10c, while the liquid-phase eddy viscosity, νft, calculated using the kf − εf − ks − kfs

model is similar to those shown in Figures 5.10a and 5.10b, the prediction for νst is very

different. This peculiar behaviour of the model warrants further investigation.

In Figure 5.11, the turbulence results for a solids mean concentration of 27.8% are

shown for each model. From Figures 5.11a and 5.11b, where the results from the kf −
εf − ks − εs and kf − εf − ks − εs − Ts models are presented, the value of kf decreases

sharply moving away from the wall for the two-phase flow compared to that for the lower

concentration. As well, the kf profile exhibits a local minimum just outside the near-wall

region. A local minimum of kf close to the wall is also present in the profile shown in

Figure 5.11c (for the kf − εf − ks − kfs model). However, towards the pipe centreline,

the behaviour of the fluid turbulence differs for the three models. In particular, the liquid-

phase turbulence kinetic energy in Figure 5.11c is higher in the core region of the pipe. An

obvious explanation, which requires further investigation, comes from the modelling of the

turbulence transport equations in the kf − εf − ks − kfs model. In this case, a turbulence

modulation model, in accordance with the formulation of Simonin (1996), was introduced.

In a related study of gas-solids flow, Krampa-Morlu et al. (2006) predicted a trend similar

to that exhibited in Figure 5.11c when a simplified model (Zhang and Reese, 2003b) for

the turbulence modulation term was implemented. For the solids-phase turbulence kinetic

energy ks, the trend in Figure 5.11 is similar to that in Figure 5.8, however, as expected

the level of ks is significantly lower across the entire pipe cross-section, indicating that ks

decreases as the solids concentration is increased. Increased solids concentration reduces
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Figure 5.11: Predictions of turbulence kinetic energy for dp = 470 µm particles at Cs =
27.8% (Run 2): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c)
kf − εf − ks − kfs model.
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the inter-particle distance and thus, the length scale of the interacting particles is reduced

resulting in lower ks values.

Figures 5.12a and 5.12b compare the kf and ks profiles predicted by the three mod-

els. Except for the kf − εf − ks − kfs model prediction near the centre of the pipe where

enhancement of turbulence is observed, the value of kf is lower than that for single-phase

flow (Figure 5.12a). At a mean concentration of 27.8%, the extent of turbulence attenua-

tion is greater than observed for flows with a solids mean concentration of 8.7%. As well,

unlike the case for Cs = 8.7% ks is similar for all three models near the pipe wall. Recall

that in Figure 5.9a, the kf −εf −ks−εs and kf −εf −ks−kfs models produced very similar

liquid-phase turbulence kinetic energy towards the centre of the pipe. The predictions of ks

for Cs = 27.8% shown in Figure 5.12b are similar in shape to those shown in Figure 5.9b

but the levels are generally higher for the lower solids bulk concentration.

Figure 5.13 shows the liquid-phase eddy viscosity predictions for a flow with a solids

mean concentration of 27.8% (Run 2). Figure 5.13a shows the predictions using the kf −
εf − ks − εs model, Figure 5.13b shows those for the kf − εf − ks − εs − Ts model, and

the phasic eddy viscosities obtained using the kf − εf − ks − kfs model are shown in Figure

5.13c. As noted for the case of the 8.7% solids mean concentration, the liquid-phase eddy

viscosity is almost the same as for the single-phase flow in Figures 5.13a and Figure 5.13b

but the magnitude is slightly lower in this case. In Figure 5.13c, the liquid-phase eddy

viscosity for the liquid-solid flow is higher than for the single-phase flow in the core region

of the pipe. Overall, the trend of the calculated values of νft and νt are similar to those

observed in Figure 5.10, i.e. the profile of νft is almost identical to that of νt. The νst profile

for Run 2 is lower than in Run 1 (Figure 5.10), which is consistent with the reduction

in the turbulence kinetic energy due to the increased solids concentration. Although the

turbulence predicted by the models are significantly different, this has little effect on the

calculated mean transport. One notable effect is the lower solids velocity produced by the

high solids-phase eddy viscosity predicted by the kf − εf − ks − εs − Ts model compared

to the other models, especially for flows with larger particles.
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Figure 5.12: Predictions of phasic turbulence kinetic energy for dp = 470 µm particles
at Cs = 27.8% (Run 2): (a) liquid-phase turbulence kinetic energy, and (b) solids-phase
turbulence kinetic energy.
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Figure 5.13: Predictions of eddy viscosity for dp = 470 µm particles at Cs = 27.8% (Run
2): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c) kf − εf − ks − kfs

model.
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Flow with 1700 µm diameter particles

Figures 5.14 and 5.15 show the turbulence kinetic energy results for Run 3. In Figure

5.14, the phasic turbulence kinetic energies are presented for each model. The near-wall

decrease in kf is more gradual, and the value of ks is noticeably higher in the core region of

the pipe compared to the results for the smaller particles (see Figure 5.8 for comparison).

The peak value of ks is lower and shifted to the right (y/R ≈ 0.2) compared to the case of

the smaller particles (Figure 5.8), except for the case of the kf − εf − ks − εs − Ts model,

where the peak vanishes and ks becomes almost constant for y/R ≥ 0.4 (Figure 5.14b).

In Figure 5.15a, the kf calculated from each model is compared. It can be seen that the

kf − εf − ks − εs model predicted the highest value of the liquid-phase turbulence kinetic

energy, which is still lower than for single-phase flow, and the kf − εf − ks − εs −Ts model

predicted the lowest value of kf . The behaviour of the ks predictions shown in Figure 5.15b

is similar to those obtained for the smaller particles (Figure 5.9b), except for the magnitude

of the predictions, which is higher for the larger particles. Besides the slight difference in

magnitude, the turbulence kinetic energy results at a solids mean concentration of 17.8%

Run 4 (not shown are similar to those of Run 3. Unlike the case of the smaller particles,

an increase in the solids concentration does not significantly change the turbulence kinetic

energy values.

Figures 5.16 and 5.17 show the eddy viscosity results for Run 3 and Run 4, respec-

tively. These results indicate a slightly lower value of νft and a much higher value of νst

compared to νt for single-phase flow. For the kf − εf − ks − εs and kf − εf − ks − εs − Ts

models, the value of νst is about four times larger than the corresponding νft value in the

core region of the pipe as shown in Figures 5.16a and 5.16b for the 8.5% solids mean con-

centration. A similar observation is made for Figures 5.17a and 5.17b for 17.7% solids

mean concentration. The νst profile calculated with the kf − εf − ks − kfs model is similar

to that obtained for the smaller particles at both solids mean concentrations. Note that, in

general, the level of the solids-phase eddy viscosity for the larger particles (Figures 5.16

and Figure 5.17) is enhanced over that for the smaller particles (Figures 5.10 and 5.13) at
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Figure 5.14: Predictions of turbulence kinetic energy for dp = 1700 µm particles at Cs =
8.5% (Run 3): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c)
kf − εf − ks − kfs model.
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Figure 5.15: Predictions of phasic turbulence kinetic energy for dp = 1700 µm particles
at Cs = 8.5% (Run 3): (a) liquid-phase turbulence kinetic energy, and (b) solids-phase
turbulence kinetic energy.
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both mean concentration values.
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Figure 5.16: Predictions of eddy viscosity for dp = 1700 µm particles at Cs = 8.5% (Run
3): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c) kf − εf − ks − kfs

model.
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Figure 5.17: Predictions of eddy viscosity for dp = 1700 µm particles at Cs = 17.7% (Run
4): (a) kf − εf − ks − εs model, (b) kf − εf − ks − εs − Ts model, and (c) kf − εf − ks − kfs

model.

128



www.manaraa.com

5.2 Effect of Solids Wall Boundary Conditions on Pressure Drop Predictions

In this section, the effect of different solids-phase wall boundary conditions is evaluated for

liquid-solid flows in a vertical pipe. The wall boundary conditions of Ding and Gidaspow

(1990) given by equation (4.87); Ding and Lyczkowski (1992) given by equation (4.87);

and Bartosik (1996) i.e., equation (2.10), as well as the no-slip and free-slip conditions

were investigated. Predictions of frictional head losses for turbulent flow of coarse parti-

cle slurries at high solids concentrations in a vertical pipe were obtained from numerical

computations. The computations were performed with the two-fluid model using the com-

mercial CFD code ANSYS CFX-4.4, in which the solids-phase wall boundary conditions

were implemented via user-Fortran routines. The predicted frictional head losses were

compared to the experimental data of Shook and Bartosik (1994).

5.2.1 Solids-phase boundary conditions

Apart from the solids-phase boundary condition at the wall, the other boundary condi-

tions were specified as discussed in Section 5.1.4. Partial-slip can occur at the wall due

to the complex particle-wall interactions as discussed in Section 4.5.2. To investigate these

particle-wall interactions, and particularly evaluate the effect of the particle wall boundary

condition on the total frictional head loss (i.e. equation (2.5)), the wall boundary condition

for the solids-phase is specified using the following relations:

1. no-slip condition - (NS);

2. free-slip condition - (FS);

3. partial-slip velocity: equation (4.87) with the slip parameter given by equation (4.89)

- (DG90) (Ding and Gidaspow, 1990);

4. partial-slip velocity: equation (4.87) with the slip parameter given by equation (4.90)

- (DL92) (Ding and Lyczkowski, 1992); and

5. modified wall dispersive shear stress: equation (2.10) - (B96) (Bartosik, 1996).

The last three cases were implemented in ANSYS CFX-4.4 using user-Fortran routines.

The phasic wall shear-stresses, which were obtained as output from the software were then
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used to calculate the frictional head losses. The total frictional losses were determined from

equations (2.4) and (2.5):

im =
−4(τfw + τsw)

ρfgD
. (5.26)

5.2.2 Experimental cases considered and numerical set-up

Simulations of water-PVC plastic mixture flows in a pipe were performed using ANSYS

CFX-4.4. The numerical predictions for frictional head losses in fully-developed steady

upward vertical pipe flows of the mixture are compared with the experimental data reported

by Shook and Bartosik (1994). In the study of Shook and Bartosik (1994), two separate re-

circulating plastic pipelines of internal diameters 26 mm and 40 mm were used. Particles

of different sizes and densities were investigated; the solids concentrations (by volume)

ranged between 10% to 45%. Recall that in the experimental work of Shook and Bartosik

(1994), the liquid-phase wall stress was determined by estimating the liquid-phase friction

factor fL for the pipe using the Reynolds number (Re = DV ρL/µL) and the pipe roughness

(k). The velocity gradient for the solids-phase was assumed to be equal to that of the liquid-

phase so that the solids wall shear stress could be calculated from the ratio of the estimated

liquid-phase wall shear stress to the liquid-velocity. The solids-phase velocity gradient

was then applied in equation (2.7). The total frictional head loss was then calculated from

equation (5.26). For the present work, the frictional head losses predicted for flows with

solids mean concentrations between 10% and 40% of 3.4 mm PVC plastic particles are

compared with the measured data. The density of the particles used is 1400 kg m−3 (i.e.

the density ratio is ρs/ρl ≈ 1.4). A pipe length of 4.0 m was considered and the flow

was treated as axi-symmetric. The numerical simulations were performed using the same

approach discussed in Section 5.1.5 and a simulation was considered converged when the

normalized residuals were reduced to a value of 10−8. Typical calculations - depending on

the mean velocity and solids mean concentration - took between 5.7 × 103 s and 2.7 × 104

s of CPU time on the 2.66 GHz PC mentioned in Section 5.1.5.
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5.2.3 Model predictions for 10% solids mean concentration

Figure 5.18 shows the predicted frictional head loss plotted against the mean mixture ve-

locity for different wall boundary conditions for the solids-phase at a solids mean con-

centration of 10%. The predictions are compared with experimental data from the study

of Shook and Bartosik (1994). The computed frictional head loss of single-phase water

flow, which matches the measured data, is also shown in the figure. Overall, the numeri-

cal results show the expected trend of increasing frictional head loss as the mean mixture

velocity increases.

Figure 5.18 shows that the calculated frictional head losses produced by the DL92

slip boundary condition and the B96 wall shear-stress formulation are very similar. The

frictional head loss produced by the DG90 partial-slip condition under-predicts the data

for the liquid-solid flow and instead matches the single-phase flow data. This is due to the

negligible solids wall shear-stress values computed compared to those of the liquid-phase

(See Table 5.3).

Compared to the measured data, the total or mixture frictional head losses predicted

for the 10% solids mean concentration using the NS, FS, and the DG90 formulations are

much lower. The prediction by the DG90 partial-slip condition lies between the predictions

made using the NS and FS boundary conditions. The frictional head losses predicted with

the DL92 partial-slip condition and the B96 wall shear-stress formulation are higher than

those predicted using the NS and FS conditions for the range of mean mixture velocities

investigated. Overall, they produce more promising results in this case. The prediction by

the DL92 partial-slip condition is lower than the measured data for Um ∼ 5.0 ms−1 but

matches the data reasonably well beyond that velocity. A similar trend is observed for the

B96 wall shear-stress formulation.

The above observations suggest that the free-slip boundary condition for the solids-

phase is inappropriate and the no-slip condition is also not applicable. The NS and the FS

131



www.manaraa.com

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Single-phase

 

C
s
 (%)    Experiment

0               
10             B96

DL92

DG90

FS

NS

 

i m
 (

m
H

2O
/m

Pi
pe

)

 
U

mix
 (m/s)

Figure 5.18: Predicted and measured frictional head losses for the upward vertical flow
of 3.4 mm PVC particles in water; Cs = 10%. Experimental measurements published
by Shook and Bartosik (1994).
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wall boundary conditions are considered to physically define the two limits of the wall con-

ditions. In this context, the DG90 partial-slip condition falls between these limits, whereas

the B96, DL92, and the experimental data do not. The results presented shows that the

present models fail in predicting the pressure drop for the flows of interest in the study.

Table 5.3 shows predictions for the phasic wall quantities at various mean mixture

velocities for the flows with mean concentration of 10%. The values of the liquid-phase

wall shear-stress are similar for all the formulations presented in the table. The magnitudes

of the solids-phase wall shear-stress are similar for the NS, DL92 and B96 conditions and

both are significantly higher than that calculated by the DG90 condition. The solids concen-

tration computed at the first node from the wall are similar for the wall boundary conditions

shown in Table 5.3. The computed solids-phase concentration at the wall increases with

increase in the mean mixture velocity. From Table 5.3, it is interesting to note that the

differences between the slip parameters λslip used in the boundary conditions for the DG90

and the DL92 models are marginal. Therefore, the large difference in the corresponding

values of the solids wall shear-stress (−τsw) for the DG90 and DL92 slip conditions must

be related to the solids velocity gradient at the wall. Analysis of the slip parameters (i.e.

equations 4.89 and 4.90) indicates that the solids concentration at the wall for these equa-

tions does not contribute to an increase in the overall frictional head loss observed in the

experiments.

5.2.4 Effect of solids mean concentration

In this section, only predictions with the DL92 partial-slip condition and the B96 wall

shear-stress formulation are discussed, since they produced reasonable results for the 10%

concentration case. Figure 5.19a shows the predicted frictional head loss for 10% and

20% solids mean concentrations compared with the measured data. Predictions made us-

ing either wall boundary conditions produced lower frictional head losses, particularly at

lower mean mixture velocities, than observed for the experimental data. Typically, the

frictional head loss produced using the DL92 partial slip condition was about 2% higher

than that produced with the B96 wall shear-stress formulation. The frictional head loss
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Table 5.3: Computed wall quantities for flow at 10% mean concentration

Cs csw Um (m/s) usw (m/s) −τfw (Pa) −τsw (Pa) λslip

0.107 0.018 2.25 1.66 9.77 - -
0.103 0.028 3.36 2.52 19.81 - -

FS 0.102 0.035 4.46 3.37 32.96 - -
0.101 0.040 5.56 4.22 49.06 - -
0.101 0.043 6.67 5.08 67.96 - -

0.107 0.023 2.25 1.57 9.76 2.56 -
0.104 0.035 3.36 2.35 19.79 5.40 -

NS 0.102 0.045 4.47 3.13 32.92 9.20 -
0.102 0.052 5.57 3.91 48.99 13.95 -
0.101 0.057 6.68 4.69 67.90 19.36 -

0.106 0.022 2.13 1.71 10.05 0.02 0.012
0.103 0.035 3.19 2.60 20.46 0.03 0.010

DG90 0.102 0.046 4.24 3.48 34.13 0.03 0.010
0.101 0.054 5.29 4.34 50.90 0.04 0.009
0.101 0.059 6.35 5.21 70.62 0.05 0.009

0.106 0.023 2.13 1.57 10.02 2.58 0.019
0.104 0.036 3.19 2.36 20.35 5.43 0.012

DL92 0.102 0.046 4.25 3.14 33.87 9.24 0.009
0.102 0.054 5.31 3.92 50.44 14.00 0.008
0.101 0.060 6.36 4.70 69.93 19.68 0.007

0.106 0.023 2.13 1.57 9.76 2.56 -
0.104 0.035 3.19 2.35 19.79 5.40 -

B96 0.102 0.045 4.25 3.13 32.92 9.20 -
0.102 0.052 5.31 3.91 48.99 13.95 -
0.101 0.057 6.36 4.69 67.90 19.63 -
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Figure 5.19: Predicted and measured frictional head losses for the upward vertical flow of
3.4 mm PVC particles in water for (a) Cs = 10% and 20% and (b) Cs = 30% and 40%.
Experimental measurements published by Shook and Bartosik (1994).
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predictions using the DL92 partial-slip boundary condition and the B96 wall shear-stress

formulation at a solids mean concentration of 20% were very similar to the predictions

for the case of 10% solids mean concentration. The predictions indicate that the DL92

partial-slip condition and B96 wall shear-stress formulation exhibit almost no effect of

solids mean concentration for the range of velocities and concentrations considered in the

study. These formulations, which include the effect of concentration via the radial distri-

bution function (Ding and Lyczkowski, 1992) or the linear concentration (Bartosik, 1996),

do not reproduce the effect of concentration. The frictional head loss predictions compared

with the experimental data for 30% and 40% solids mean concentration are shown in Figure

5.19b. Both models significantly under-predict the measured data and fail to demonstrate

significant variations with Cs.

In Figure 5.20, the effect of mean concentration on the total frictional head loss pre-

dictions are presented using the DG92 slip condition. It is observed from the figure that

the total frictional head loss computed from equation (5.26), increases with solids concen-

tration. The behaviour is verified in Table 5.4 using the predicted wall quantities obtained

with the slip boundary conditions of Ding and Lyczkowski (1992). It can be seen from

the table that, irrespective of the solids mean concentration, both the liquid and the solids

wall shear-stresses are similar at lower mean mixture velocities as evidenced in the preced-

ing figures. As the solids mean mixture velocity increases, both the liquid and the solids

wall shear-stresses increase non-linearly. As well, the calculated wall solids concentration

increases as the mean mixture velocity increased. The resulting slip parameter reduces

leading to lower values of the solids wall shear stress than the liquid-phase values. On the

other hand, as concentration increase, the solids-phase wall shear stress increase whereas

the liquid-phase wall shear stress decrease. Sumner et al. (1990) observed that at higher

velocities and concentration, the wall region is depleted of solids.
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Figure 5.20: Effect of solids mean concentration on frictional head loss predictions for
upward vertical flow of 3.4 mm PVC particles in water using the wall boundary condition
model of (Ding and Lyczkowski, 1992).
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Table 5.4: Computed solids wall boundary condition quantities of (Ding and Lyczkowski,
1992) model.

Cs csw Um (m/s) usw (m/s) −τfw (Pa) −τsw (Pa) λslip

0.106 0.023 2.13 1.57 10.02 2.58 0.0187
0.104 0.036 3.19 2.36 20.35 5.43 0.0118

10 0.102 0.046 4.25 3.14 33.87 9.24 0.0091
0.102 0.054 5.31 3.92 50.44 14.00 0.0078
0.101 0.060 6.36 4.70 69.93 19.68 0.0070

0.206 0.057 2.13 1.58 10.02 2.63 0.0073
0.203 0.075 3.19 2.37 20.34 5.56 0.0055

20 0.202 0.089 4.24 3.16 33.87 9.47 0.0046
0.202 0.100 5.29 3.95 50.46 14.32 0.0041
0.202 0.108 6.35 4.73 70.01 20.12 0.0037

0.307 0.131 2.12 1.52 10.27 2.45 0.0030
0.304 0.160 3.18 2.29 20.88 5.23 0.0024

30 0.303 0.176 4.23 3.06 34.76 8.97 0.0022
0.303 0.187 5.28 3.83 51.75 13.68 0.0020
0.302 0.194 6.33 4.55 72.26 18.94 0.0019

0.407 0.219 2.12 1.44 10.81 2.25 0.0017
0.405 0.250 3.17 2.18 21.99 4.84 0.0014

40 0.403 0.269 4.22 2.93 36.62 8.35 0.0013
0.403 0.281 5.27 3.68 54.52 12.77 0.0013
0.403 0.289 6.31 4.43 75.54 18.08 0.0012

138



www.manaraa.com

5.3 Summary

Simulations of sand slurries in vertical pipes have been performed and presented in this

chapter. The performance of three different models for the solids-phase effective stress in

turbulent fluid-particle flows has been investigated. The kf − εf − ks − εs, kf − εf − ks − εs,

and kf − εf − ks − εs models have been used to simulate coarse particle liquid-solid flows

in vertical pipes. The numerical results show that the models predict reasonably well the

solids-phase mean flow characteristics, i.e., the solids phase velocity and concentration dis-

tribution for smaller particles at lower than 10% solids mean concentration. The results at

higher solids mean concentration were not reproduced by the models. For the particular

case of the concentration distribution, additional modelling effort must be considered for

accurate prediction of non-uniform concentration distribution. The computed phasic turbu-

lence kinetic energy and eddy viscosity qualitatively were different for the models investi-

gated. Presently, experimental results are not available to validate such computations. The

effect of boundary conditions on the frictional loss prediction was also investigated. Again,

the models investigated fail to reproduce the frictional losses observed in experiments at

high solids mean concentration. In general, it is obvious that the present physically-based

models developed for dilute particulate flows are not suitable for dense flows.
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CHAPTER 6

HORIZONTAL FLOW SIMULATIONS

6.1 Introduction

In this chapter, a more current version of CFX (ANSYS CFX-10) is employed to com-

pute horizontal flows again in an attempt to investigate its application to coarse-particle

liquid-solid slurry flows. It is worth noting that CFX-10 was chosen for the horizontal flow

simulations due to its release at the initial stages of the problem set-up and the fact that

further development of CFX-4.4 was not supported. The physical models implemented

in ANSYS CFX-10 for dense multiphase flows are investigated. The effect of solids bulk

concentration, particle diameter, and pipe diameter on computed solids-phase velocity and

concentration are examined. The predicted profiles are also compared with measured data.

6.2 Mathematical Model

A general set of governing equations for mass and momentum conservation in particulate

turbulent flows using the two-fluid model were given in equations (1.1) to (1.5). The con-

stitutive relation for the solids stress used in CFX-10 is given by equation (4.66), which is

recast in the form

Ts ij = −Psδij + 2µs

(
Ss ij −

1

3
Ssjjδij

)
+ ξsSsjjδij . (6.1)

In the context of kinetic theory, the solids pressure is given by equation (5.9), where the

radial distribution function g
0

is calculated using equation (4.91). In CFX-10, to prevent

the value of g
0

calculated from equation (5.9) from becoming infinity as cs −→ Cmax, it
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calculated using

g
0

= C
0
+ C

1
(cs − Ccrit) + C

2
(cs − Ccrit)

2 + C
3
(cs − Ccrit)

3 , cs ≥ Ccrit (6.2)

where Ccrit = Cmax − 0.001 and C
0

= 1079, C
1

= 1.08 × 106, C
2

= 1.08 × 109, and

C
3

= 1.08 × 1012. Similar to the discussion in Chapter 5, the solids shear viscosity is

divided into kinetic and collisional contributions. In ANSYS CFX-10, the kinetic solids

viscosity is modelled following Gidaspow (1994) and Lun and Savage (1986). Following

the model of Lun and Savage (1986) in the present study, we have

µs =
5π1/2

96
dpρs

(
1

ηg
0

+
8cs
5

)[
1 + 


η (3η − 2) csg0

2 − η

]
T 1/2

s , (6.3)

which is essentially the same as equations (5.4) to (5.6) without the last term in equation

(5.6). The collisional viscosity is not implemented in ANSYS CFX-10 and also omitted

in this work. For completeness of the granular flow models in the documentation of the

software, collisional viscosity is given by

µs =
4

5
c2sdpρsg0

(1 + η)
Ts

π

1/2

. (6.4)

The bulk viscosity is modelled by equation (5.8). In CFX-10, the values of the granular

temperature can be calculated using one of three approaches: specifying a constant value,

a zero-equation model (ZEM), or an algebraic equilibrium model (AEM). In addition, one

can choose not to select models for the granular temperature altogether. In this study, the

case where not granular temperature is calculated (hereafter referred to as NTM), the ZEM,

and the AEM models were investigated.
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6.2.1 Zero-equation model for Ts

The zero-equation model was derived by Ding and Gidaspow (1990). Considering a simple

shear single-phase flow, the granular temperature given by equation (5.10) was reduced to

T xy
∂Ux

∂y
− γ = 0. (6.5)

Substituting the constitutive equations (6.1) and (5.14) into equation (6.5) and simplifying

yields

Ts =
d2

s

5(3 − a)

1

(1 − e)

(
∂Ux

∂y

)2

, (6.6)

where a can be either 0 or 1. In CFX-10, a is set to 0, and equation (6.6) is implemented as

Ts =
d2

s

15(1 − e)
S2

sij. (6.7)

6.2.2 The algebraic equilibrium model for Ts

The algebraic equilibrium model is based on the local equilibrium assumption applied to

the modelled transport equation of the granular temperature (e.g. equation (5.10)). In its

application, the advection and diffusion parts of equation (5.10) are neglected so that the

production is equal to the dissipation:

Production = Dissipation =⇒ Ts ij
∂Usi

∂xj
= γ (6.8)

It is worth noting that the interaction source term in equation (5.10), which can be positive

or negative depending on the flow physics (see for example Krampa-Morlu et al., 2006), is

not implemented in CFX-10. The production term is calculated from the product of equa-

tion (6.1) and the solids-phase velocity gradient. Therefore, the left hand side of equation

(6.8) is expanded as

Ts ij
∂Usi

∂xj
= −Ps

∂Usi

∂xj
δij

︸ ︷︷ ︸
−PsD

+µs

(
∂Usi

∂xj
+
∂Usj

∂xi

)
∂Usi

∂xj︸ ︷︷ ︸
µsS

2

+

(
ξs −

2

3
µs

)(
∂Usk

∂xk
δij

)2

︸ ︷︷ ︸
λsD

2

, (6.9)
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The dissipation term is also modelled differently from equation (5.14) as

γ = 3
(
1 − e2

)
c2sρsg0

Ts

[
4

ds

(√
Ts

π
− ∂Usk

∂xk
δij

)]
. (6.10)

Since the solids pressure, shear, and bulk viscosities depend on Ts, one can write

Ps ∝ Ts

µs ∝ T 1/2
s

ξs ∝ T 1/2
s

(6.11)

or

Ps = P (0)
s Ts

µs = µ(0)
s T 1/2

s and ξs = ξ(0)
s T 1/2

s ⇒ λs = λ(0)
s T 1/2

s .
(6.12)

In equation (6.12), quantities with the superscript (0) denote proportionality constants. It

should be noted that the treatment of these proportionality constants are not outlined in the

documentation of the software. Recall the definition of λs from equation (6.9).

Substituting equation (6.12) into equations (6.10) and (6.9), and using equation (6.8)

yields a quadratic expression in the form

ADTs + (BP − BD)T
1
2

s −AP = 0. (6.13)

In equation (6.13), the subscript P and D denote production and dissipation coefficients,

respectively. For the production coefficients,

AP = λ(0)
s D2 + µ(0)

s S2 (6.14)

and

BP = P (0)
s D; (6.15)
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where

λs = λ(0)
s T

1
2
s =

(
ξ(0)
s − 2

3
µ(0)

s

)
T

1
2
s ≥ 0 and Ps = P (0)

s Ts (6.16)

are deduced from their functional relationship with the granular temperature. Similarly for

the case of the dissipation, we have in conjunction with equation (6.10),

AD =
4

dsπ
ED and BD = EDD; (6.17)

where

ED = 3
(
1 − e2

)
c2sρsg0

≥ 0. (6.18)

From equations (6.17) and (6.18), equation (6.13) has a unique solution of the form

T
1
2

s =
BD −BP +

√
(BD − BP)2 + 4ADAP

2AD

, (6.19)

which is always positive. In regions of low solids concentration, un-physical and very large

values of Ts are calculated with this model. This problem is overcome by setting, as a

reasonable estimate, an upper limit for Ts using the square of the mean velocity scale; the

particular velocity scale used was not indicated in the software documentation.

6.2.3 Consideration for solids-phase turbulence

The solids-phase turbulence model in CFX-10 is an extension of the single-phase turbu-

lence model. For phasic considerations, the models available are phase-dependent mod-

els comprised of algebraic (with options for zero-equation, user-defined eddy viscosity,

or dispersed-phase zero-equation), two-equation, and Reynolds stress models. The two-

equation and Reynolds stress models are recommended for use with the continuous phase.

The developers of the multiphase models in CFX-10 limit the turbulence models for the

dispersed phase to zero-equation and dispersed phase zero-equation models. In the present

study, the dispersed-phase zero-equation model, which is the default model, is employed

and calculated from

µst =
ρs

ρf

µft

σ
. (6.20)
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The value of the parameter σ depends on the relative magnitudes of the particle relaxation

time and the turbulence dissipation time scale. By default it is set to σ = 1.

6.3 Summary of Experimental Data used for Comparison

The experiments simulated in the present study were taken from Gillies (1993). In the

work of Gillies (1993), four pipe flow loops with nominal diameters of 53.2, 158.3, 263,

and 495 mm were considered. A wide range of narrow and broad size distributions of sand

were tested. Coal-in-water flow experiments were also performed in the 263 mm diameter

pipe flow loop. The narrow size distribution sand particles consisted of mean diameters

from dp = 0.18 mm to 2.4 mm, while the broad size distribution of sand had dp from

0.29 mm to 0.38mm and coal particle diameters varied from 0.8 to 1.1 mm. In the study

of Gillies (1993), a large database of pressure drop versus mixture velocity as well as local

distributions of solids-phase velocity and concentration were provided using specialized

equipment designed for particle-in-water slurry flows. The solids-phase velocities were

measured along the arcs at r/R = 0.4 and 0.8 (see Figure 6.1) with a conductivity probe.

Figure 6.1: Sampling positions for particle velocity measurements. Reproduced with per-
mission from Pipeline Flow of Coarse Particle Slurries, R. Gillies, Copyright (1993), Uni-
versity of Saskatchewan.
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6.4 Simulation Matrix and Numerical Method

6.4.1 Simulation matrix

Two sets of the narrow size distribution sand particles with nominal diameters of dp50 =

0.18 mm and 0.55 mm, and density ρs = 2650kgm3 were considered. Preliminary investiga-

tion with larger sand particles, specifically dp = 2.4 mm lead to instabilities and divergence

of the solver and, therefore was deferred to future work. Flows with solids bulk concen-

trations of 15 and 30% by volume in three different pipe flow loops of diameters, Dp =

53.2, 158.3, and 263 mm were simulated. The experimental conditions used for the simu-

lations are shown in Table 6.1. An overview of the specific flow conditions considered in

this study are shown in Table 6.2. For the simulations reported here, the predictions by the

Table 6.1: Properties of liquid and solids-phase, flow conditions and CFX-10 model param-
eters and constants.

Description Symbol Value Constituent properties

fluid density ρf ∼ 998 kgm−3

fluid viscosity µf 10−3 Pa·s
solids density ρs 2650 kgm−3

solids viscosity µs 10−8 and from models used
particle diameter dp 0.18, 0.55 mm

Inlet conditions

mean velocity of fluid Uf 3.05 ∼ 4.20 ms−1

volume fraction of fluid (1 − Cs) 0.85, 0.70

turbulence intensity TI 0.1
turbulence kinetic energy of fluid kf software default selected
dissipation rate of fluid εf software default selected
mean velocity of solids Us 3.05 ∼ 4.20 ms−1

volume fraction of solids Cs 0.15, 0.30
turbulence kinetic energy of solids ks software default selected
dissipation rate of solids εs software default selected
granular temperature Ts software default selected
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solids-phase stress models are compared with experimental results from Gillies (1993) as

noted above while at the same time, some variation in the test conditions was also sought.

Thus, only the input parameters of Runs 1 through 8, 15, and 16 in Table 6.2 match the

experiments.

Table 6.2: Experimental and other flow conditions used in simulations

Run # dp(µm) Cs (%) Umixin (m/s) Usin (m/s) D (mm) Ts model

1 180 15 3.05 2.94 53.2 -
2 180 15 3.05 2.94 53.2 Zero
3 180 15 3.05 2.94 53.2 AEM
4 180 30 3.05 2.72 53.2 AEM
5 550 15 3.05 2.78 53.2 AEM
6 550 30 3.05 2.68 53.2 -
7 550 30 3.05 2.68 53.2 Zero
8 550 30 3.05 2.68 53.2 AEM

9 180 15 3.05 2.94 158.3 AEM
10 180 30 3.05 2.72 158.3 AEM
11 550 15 3.05 2.78 158.3 AEM
12 550 30 3.05 2.68 158.3 AEM
13 180 15 3.05 2.94 263.0 AEM
14 180 30 3.05 2.72 263.0 AEM
15 550 15 4.21 4.09 263.0 AEM
16 550 30 4.17 4.00 263.0 AEM

6.4.2 Simulation approach

Initially, geometries were created in ANSYS Workbench (version 10), and a series of grid

compositions using the Cad2Mesh suite from ANSYS CFX-10, were tested using unstruc-

tured mesh as well as a mesh system consisting of unstructured mesh with structured mesh

near the wall of the pipe (hybrid mesh). In addition, structured meshes generated using

CFX- Build from CFX-4 were also tested in CFX-10. After extensive preliminary evalua-

tions of the grid systems, the hybrid mesh was found to produce the most realistic results.

For the three pipe diameters investigated, a pipe length of L = 2.0 m was used. An

example of cross-sectional meshes for the hybrid grid at z = 0.25L, 0.5L, 0.75L, and L is
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shown in Figure 6.2a. Initially, a major challenge in the present simulations was obtaining

realistic results. This was not easily attainable with default parameters. The application of

a ‘black box’ like CFX requires careful extensive parameter tuning. The use of the grid

adaptation option with default setting of the adaptation parameters seemed to produced bet-

ter qualitative results. The aim of the grid adaptation was to better resolve the characteristic

asymmetric form of the field variables. It is acknowledged that a parametric study of the

available grid adaptation parameter settings and variables to adapt would be worthwhile.

However, this would be costly given the computational time for each simulation. A set of

meshes resulting from the adaptation process as the flow becomes fully developed is shown

in Figure 6.2b. The simulation was considered converged when the normalized residuals

were reduced to a value< 10−6 and not reducing, although all the simulations were slightly

unstable around the converged value. A typical total CPU time for the calculations on a PC

at 2.66 GHz with 1 GB of RAM ranges between approximately 3.3 × 103 and 1.7 × 105

seconds.

6.4.3 Boundary conditions

The inlet and outlet boundary conditions were specified in the same fashion as mentioned

in the preceding chapter; for the wall boundary condition, the no-slip condition was set for

both the liquid-phase and the solids-phase. It should be noted that in the two-fluid model

context, the wall boundary condition for the solids-phase, particularly in horizontal flows

such as the kind investigated in this study, is complex. The discussion in the preceding

chapter on this topic for vertical flows with high solids bulk concentrations also indicate

that existing models are inadequate. Moreover, the current version of CFX-10 does not

provide an easily accessible option for setting the solids wall boundary condition. Hence,

the present choice of a no-slip condition for the solids-phase is made to at least account

for regions of the pipe where the no-slip condition for the solids-phase may be satisfied.

It is assumed that in the near-stationary or moving-bed region, both phases would move

at the same rate and, therefore, the liquid conditions can be applied to the solids. This is

somewhat similar to the no-slip condition often imposed for the mixture model in the works

of Roco and Shook (e.g. Roco, 1990). It should also be noted that the above argument is not
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Figure 6.2: Cross-sectional grid distributions before and after simulation. (a) Original mesh
generated prior to simulation; (b) Mesh due to adaptation after simulation.
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completely true since at higher velocities, repulsive forces, in addition to particle-particle

interactions, could cause the particles to move away from the wall creating a depleted solids

region close to the wall. This phenomena has been observed by Daniel (1965) and linked to

the so-called off-the-wall-lift model in the recent theoretical work of Wilson et al. (2000).

6.5 Discussion of Results

6.5.1 Preliminary simulations: Solids stress model comparison

Initial studies were conducted to investigate the solids-phase stress for two particle sizes at

two solids bulk concentrations. The simulations correspond to Runs 1 to 3, and 6 to 8 in

Table 6.2. Three cases in terms of the models for the granular temperature were considered:

the NTM, ZEM, and the AEM models. The simulation results at z = L are used for the

discussion in the sections below.

6.5.1.1 Flow with medium particles

Contour plots for the solids-phase velocity and concentration are shown in Figure 6.3 for

the 180 µm sand particles with solids bulk concentration of 15% in water in the 53.2 mm

pipe (Runs 1 through 3). In Figure 6.3, the expected characteristics of negatively buoyant

particles in liquid flows can be seen. All three plots show that the location of the maximum

solids-phase velocity, presented on the left hand side, is located above the centre of the

pipe. The solids concentration contours are shown on the right hand side of Figure 6.3.

The concentration contours produced by all the models appear similar, especially for Runs

1 and 3, and the distributions are non-symmetric as in the case of the solids-phase velocity

distribution. The phasic velocity and concentration distributions plotted along the centre-

line in the vertical plane of the pipe are shown in Figures 6.4a through 6.4c. It is interesting

to note that the velocity and concentration predictions are identical and collapse onto one

curve for all three cases. That is the NTM, ZEM, and the AEM models produce similar

phasic velocity and concentration distributions. In Figure 6.4a, the liquid-phase velocity in-

creases from the bottom wall of the pipe, attains a maximum value at about 0.75D from the

bottom wall and then decreases to a finite value at the top wall. The trend is similar for the
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(a) Run 1: No model for Ts

(b) Run 2: Zero-equation model

(c) Run 3: Algebraic equilibrium model

Figure 6.3: Contour plots of solids-phase velocity and concentration for 0.18 mm sand-in-
water flow in 53.2 mm pipe with Cs = 15%: comparison of solids stress models.
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Figure 6.4: Comparison between model predictions of phasic velocity and concentration
distributions for 0.18 mm sand-in-water flow in 53.2 mm pipe at Cs = 15%. (a) Liquid
velocity, (b) solids-phase velocity, and (c) Solids concentration.
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solids-phase, for which the velocity (Figure 6.4b) increases as the concentration decreases

(Figure 6.4c) from the bottom wall of the pipe toward the top, but then decreases near the

top wall.

6.5.1.2 Flow with coarse particles

The model predictions were also obtained in the 53.2 mm pipe for larger particles at a

higher solids bulk concentration of 30% (see Run 6 through 8 in Table 6.2). The solids-

phase velocity predicted using the zero-equation and the algebraic equilibrium models for

the granular temperature are again very similar. Figure 6.5 shows the predictions of the

solids-phase velocity and concentration contours for the AEM case. Similar observations

of asymmetric feature can also be made for the solids concentration contours on the right

hand side of Figure 6.5 as for the case of the medium particles. For the larger particles at

higher solids bulk concentration, the solids concentration is lower near the top of the pipe.

In Figure 6.6, the local distribution of phasic velocity and concentration are presented for

Run 6 through 8. The results produced by the case of the NTM model are different from

those using the ZEM and AEM models, particularly in the lower part of the pipe. As it

can be seen from Figures 6.6a and 6.6b, the values of the velocity predicted with the NTM

model for both the liquid and solids-phase are about 0.5 m s−1 lower than those calculated

with the ZEM and AEM models. For the solids concentration, the NTM model predicted

a higher value, which exceeds the maximum packing of 0.63%, than that predicted by the

granular theory models. However, the type of granular temperature model did not influence

the results.

From the viewpoint of the flow physics, it can be seen that the additional stress due

to the solids-phase is important for medium and coarse particles in liquid-solid flows. In

addition, the wall boundary conditions cannot be neglected as was noted for vertical flows

in Chapter 5 when dense flows are considered. Even though wall boundary conditions were

not specifically investigated, their effect cannot be ignored. For the negatively buoyant

particles of interest in the present work, higher solids concentration at the bottom wall
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Figure 6.5: Contour plots of solids-phase velocity and concentration for 0.55 mm sand-in-
water flow in 53.2 mm pipe with Cs = 30% using the AEM model (Run 8).

and lower at the top wall is inevitable. The solids concentration distribution are dependent

on the volume flow rate, which also controls the interaction between the solids and the

wall. The contour plots have shown qualitatively that the solids concentration at the wall

influences the velocity prediction along the wall of the pipe.

6.5.2 Comparison between predictions and experimental data

In this section, solids-phase velocity and concentration distributions are compared with

measured data. The experimental data was taken from the study of Gillies (1993). The

calculations with the AEM model for Ts are used for the comparison. The AEM was

chosen for two reasons. First, the NTM model does not consider closure for the solids-

phase stress. For larger particles at high solids bulk concentration, the NTM model appears

to over-predict the solids concentration at the bottom wall of the pipe. Secondly, the ZEM

model was derived on the assumption that the flow is a simple shear single-phase flow with

a uniform granular temperature. Hence, the solids concentration has to be zero to derive

the ZEM model. Thus, while the AEM does not count for convection and diffusion in the

transport of the fluctuating energy of the solids-phase, it is less ad hoc compared to the

NTM and the ZEM models.
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Figure 6.6: Comparison between model predictions of phasic velocity and concentration
distributions for 0.55 mm sand-in-water flow in 53.2 mm pipe at Cs = 30%. (a) Liquid
velocity, (b) solids-phase velocity, and (c) Solids concentration.
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Figure 6.7a shows the predicted and measured solids-phase velocity for 0.18 mm par-

ticles at a concentration of 15%. The locations plotted correspond to points 1 through 8 in

Figure 6.1 (r/R = 0.8). Here the results are plotted against normalized vertical distance

(y/R) from the bottom wall. That is the (y/R) points corresponds to the projection of the

(r/R) points on the vertical centreline. It should, therefore, be noted that the velocity pro-

files actually represent values not far from the wall of the pipe. The predicted velocity is

higher than the corresponding measured values.

The solids concentration is shown in Figure 6.7b where both the experimental and

the predicted profiles are chord-averaged. It is worth noting that for the experimental data,

the locations of the chord-average concentration profiles do not correspond to those for the

velocity data. For this vertical distribution, the prediction matches the measured data in the

core region of the pipe, but not near the wall. The solids concentration is, especially, over-

predicted at the lower wall. This is consist for other conditions simulated. While the wall

boundary condition for the solids concentration is usually specified by setting the normal

gradient to zero,
∂cs
∂n

= 0, (6.21)

the form of its implementation in CFX-10 is unknown to the user. An incorrect wall bound-

ary condition for the solids-phase velocity would consequently lead to inaccurate concen-

tration at the wall. The physical importance and implications of wall boundary conditions

for these kinds of flows have been noted in the preceding chapters. In the region away from

the top and bottom walls, the concentration prediction matched the measured data. Similar

observations can be made for the 0.18 mm particles at solids bulk concentration of 30%

(Figures 6.8a and b), and the 0.55 mm particles at solids bulk concentrations of 15% and

30% (Figures 6.8c to f), respectively. It is, therefore, noted that whereas the contour plot

predictions are qualitatively reasonable, the point values do not match the measured data.

A critical observation and conclusion is that the present models in CFX-10 cannot satisfac-

torily predict dense flow of large particles in liquids. In slurry flow, a paramount objective

is to move the mixture without settling the particles. Therefore, from modelling viewpoint,
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Figure 6.7: Comparison between model predictions and experimental data for 0.18 mm
sand-in-water flow in a 53.2 mm horizontal pipe at Cs = 15%; (a) solids-phase velocity
profile along r/R = 0.8 plotted against projected vertical distance along the centreline,
and (b) chord-averaged solids concentration distributions. Experimental data was taken
from Gillies (1993).
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Figure 6.8: Comparison between experimental and predicted phasic velocity and concen-
tration distributions of sand-in-water flow in 53.2 mm pipe: (a)-(b) 0.18 mm particles at
Cs = 30%; (c)-(d) 0.55 mm particles at Cs = 15%; and (e)-(f) 0.55 mm particles at
Cs = 30%. Experimental data was taken from Gillies (1993).
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the flow dynamics in the wall region is of particular interest. The predictions presented in

this study indicate that the models investigated fail to reproduce velocity and concentration

behaviour in the bottom wall regions of the pipe.

6.5.3 Discussion of concentration, particle size, and pipe diameter effects

In this section, discussion of the model predictions using the algebraic equilibrium model

for the granular temperature is presented. The effects of solids bulk concentration, parti-

cle diameter, and pipe diameter are discussed. It is worth noting that the results obtained

for Runs 13 through to 16 are not discussed in this section. The solids-phase velocity and

concentration contours are shown in Figures F.1 and F.2 in Appendix F. The velocity pre-

dictions were somewhat similar to other calculations but the concentration distributions cal-

culated were different. For these simulations, the solids concentration distributions along

the centreline did not exhibit the expected features.

6.5.3.1 Solids concentration effect in the 53.2 mm pipe

The effects of solids bulk concentration on the flow of 0.18 mm and 0.55 mm particles

in the 53.2 mm diameter pipe are discussed in this section. The contours of solids-phase

velocity and concentration calculated for the 0.18 mm sand particles using the AEM model

at solids bulk concentrations of 15% and 30% (i.e. Runs 3 and 4) are shown in Figure 6.9.

Both plots show the expected asymmetric feature of the velocity and concentration distribu-

tions for the solids-phase. The solids-phase velocity and concentration profiles along the

vertical through the centre of the pipe are shown in Figure 6.10. Figure 6.10 presents the

(a) the solids-phase velocity and (b) the solids concentration profiles for the 0.18 mm sand

particles for Runs 3 and 4. The vertical location is normalized by the radius of the pipe.

In Figure 6.10a, the solids-phase velocity profiles have almost the same shape indicating

no effect of solids bulk concentration on the 0.18 mm sand slurry flows at 15% and 30%

solids bulk concentration. Figure 6.10a shows that in the lower 25% region of the pipe, the

effect of concentration on the velocity is negligible and a constant shear layer depicted by

the almost linear curve can be seen. In the same region the solids concentrations, shown

in Figure 6.10b, decreases as the distance from the bottom wall increases but the solids
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(a) solids-phase velocity and concentration at Cs = 15%

(b) solids-phase velocity and concentration at Cs = 30%

Figure 6.9: Contour plots of solids-phase velocity and concentration for 0.18 mm sand-in-
water flow in 53.2 mm pipe.
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Figure 6.10: solids bulk concentration effect on solids-phase velocity and concentration
distributions in 53.2 mm pipe for flow with 0.18 mm particles. (a) solids-phase velocity ,
and (b) concentration of 0.18 mm sand-in-water mixture in 53.2 mm pipe at Cs = 15% and
30%.
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concentration for the 15% mean value is much lower than that for the 30% mean value.

Physically, the values of the solids concentration is expected to be the same in that region.

In the core region, −0.5 < y/R < 0.5, another constant and much lower shear is apparent

and the solids-phase velocity at solids bulk concentration of 15% is only slightly larger than

that of 30%. In the same region, the difference between the solids concentration profiles

also increases. The solids-phase velocity peaks around y/R ≈ 0.5 (generally observed

for the conditions simulated) and beyond that decreases to a minimum at the upper wall.

Correspondingly, the solids concentration decreases to a minimum at the upper wall, where

the value for the 30% solids bulk concentration is still higher than that for the 15% case.

For the larger particles (dp = 0.55 mm for Runs 5 and 6), shown in Figure 6.11, the

respective magnitudes of both the velocity and concentration for the two solids bulk con-

centrations show that variations exist, particularly, in the solids concentration field. The

solids-phase velocity and concentration profiles for Runs 5 and 6 are presented in Figures

6.12a and 6.12b, respectively. It can be seen that the solids-phase velocity profiles at solid

mean concentrations of 15% and 30% are almost identical. The solids concentrations near

the lower and upper walls are also similar, whereas in the core region, the solids concentra-

tion values are consistently different.

6.5.3.2 Solids concentration effect in the 158.3 mm pipe

Figure 6.13a shows contour plots for the solids-phase velocity and concentration for flow

in a 158.3 mm pipe using the 0.18 mm sand particles at solids bulk concentration of 15%

(i.e. Run 9). Recall that the inlet velocity and concentration fields for this run are the

same as those of Run 3 (see Table 6.2) to enable investigation of any pipe diameter effect.

For this pipe diameter, Gillies (1993) reported no flow information for the particles with a

narrow size distribution. Figure 6.13b presents contours for the flow at 30% mean concen-

tration. The solids concentration effect on the solids-phase velocity in Figures 6.13a and

6.13b is not significant. The solids-phase velocity profiles along the centreline presented

in 6.14a show similar behaviour. On the right-hand side of the contour plots, the solids

concentration is constant in the core region of the pipe (this is more clearly shown using
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(a) solids-phase velocity and concentration at Cs = 15%

(b) solids-phase velocity and concentration at Cs = 30%

Figure 6.11: Contour plots of solids-phase velocity and concentration for 0.55 mm sand-in-
water flow in 53.2 mm pipe.
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Figure 6.12: Solids bulk concentration effect on solids-phase velocity and concentration
distributions in 53.2 mm pipe for flow with 0.55 mm particles. (a) solids-phase velocity,
(b) concentration of 0.55 mm sand-in-water mixture in 53.2 mm pipe at Cs = 15% and
30%.
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the centreline profile in Figure 6.14b).

(a) solids-phase velocity and concentration at Cs = 15%

(b) solids-phase velocity and concentration at Cs = 30%

Figure 6.13: Contour plots of solids-phase velocity and concentration for 0.18 mm sand-in-
water flow in 158.3 mm pipe.
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Figure 6.14: solids bulk concentration effect on solids-phase velocity and concentration
distributions in 158.3 mm pipe for flow with 0.18 mm particles. (a) solids-phase velocity
, (b) concentration of 0.18 mm sand-in-water mixture in 158.3 mm pipe at Cs = 15% and
30%.
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The results for the larger particles (0.55 mm) are shown in Figure 6.15 in which the

contour plots for the solids-phase velocity and the concentration are presented. As dis-

cussed above for flow in the smaller pipe in Section 6.5.3.1, the data shows that the mag-

nitudes of the velocity and concentration for the two solids bulk concentrations are similar.

In Figure 6.16a, the vertical profiles of the solids-phase velocity are similar, whereas the

solids concentration in Figure 6.16b exhibits a trend that is similar to that observed for Run

3. However, the solids concentration at the wall is much higher and identical (≈ 60%) for

both solids bulk concentrations.

6.5.3.3 Particle diameter effect

Figures 6.17a and 6.17b show the solids-phase velocity and concentration profiles, respec-

tively, for flows with 0.18 mm and 0.55 mm sand particles at a solids bulk concentration of

15% for flow in the 53.2 mm diameter flow loop. In Figure 6.17a, the flow with the 0.55

mm particles produced a higher solids-phase velocity than that for the 0.18 mm particles

in the lower half of the pipe. However, the solids-phase velocity is slightly higher in the

upper half of the pipe for the 0.18 mm particles. A similar trend can be seen for the solids

concentration in Figure 6.17b. The solids concentration at the wall is higher for the 0.55

mm particles indicating a strong particle diameter effect. In the wall region, smaller parti-

cles can be trapped within the liquid-phase sublayer where the local turbulence is damped.

For larger particles, their sizes can be larger than the characteristic size of the sublayer and

the local turbulent hydrodynamic force can dislodge them from the sublayer resulting in

acceleration. The effect of particle diameter on the solids-phase velocity at a solids bulk

concentration of 30% is shown in Figure 6.18a and on the solids concentration in Figure

6.18b. The behaviour is almost identical to those noted for the case of the 15% solids bulk

concentration. Moreover, the solids concentration is higher in lower region of the pipe. The

effect of particle diameter in the larger pipe was similar to that described above. The main

difference was that both the velocity and solids concentration fields are uniform in the core

region of the pipe.
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(a) solids-phase velocity and concentration at Cs = 15%

(b) solids-phase velocity and concentration at Cs = 30%

Figure 6.15: Contour plots of solids-phase velocity and concentration for 0.55 mm sand-in-
water flow in 158.3 mm pipe.
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Figure 6.16: solids bulk concentration effect on solids-phase velocity and concentration
distributions in 158.3 mm pipe for flow with 0.55 mm particles
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Figure 6.17: Particle diameter effect on solids-phase velocity and concentration distribu-
tions at Cs = 15% in 53.2 mm diameter pipe. (a) solids-phase velocity for Cs = 15%, and
(b) Solids concentration for Cs = 15%.
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Figure 6.18: Particle diameter effect on solids-phase velocity and concentration distribu-
tions at Cs = 30% in 53.2 mm diameter pipe. (a) solids-phase velocity for Cs = 30%, and
(b) Solids concentration for Cs = 30%.
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6.5.3.4 Pipe diameter effect

The pipe diameter effect can be inferred from the concentration and particle size effects

discussed the in the preceding sections. The results for the coarse particles (0.55 mm sand

particles) are selected for discussion in this section. The results for the flows in the 53.2 mm

and 158.3 mm pipe are compared. It should be noted that the bulk velocities in both pipe

are the same (see Table 6.2) at 3.05 ms−1. Therefore, the volume flow rates in both pipes

are not the same and so is their characteristic Reynolds numbers. Overall, the solids-phase

velocity and concentration distributions in the larger pipe become more uniform especially

in the core region of the pipe suggesting a different flow behaviour.

In Figure 6.19 the influence of pipe diameter on the predicted solids-phase velocity

profiles (6.19a) and those for the solids concentration (6.19b) for the coarse particle (0.55

mm sand particles) flows at solids bulk concentration of 15% are presented. The character-

istic Reynolds number based on the bulk velocity, the diameter of the pipe and the liquid

properties is approximately 161000 for the flow in the 53.2 mm pipe and 480000 for the

flow in the 158.3 mm pipe. In Figure 6.19a, the solids-phase velocity in both pipes are simi-

lar at the wall. In the core region, the solids-phase velocity in the 53.2 mm diameter pipe is

higher than that predicted using the larger 158.3 mm pipe. The solids concentration at the

bottom wall is higher for flow in the larger pipe, whereas at upper wall the expected mini-

mum values are obtained. However, the solids are more concentrated in the region around

the lower 25% of the pipe in the 53.2 mm diameter pipe compared to that in the 158.3 mm

diameter pipe. Beyond that region, the opposite can be noticed. At 30% solids bulk concen-

tration, the trends for the solids-phase velocity in Figure 6.19a and the solids concentration

in Figure 6.19b are similar to those described above for the 15% concentration flow. A

particular difference lies in the physics of the concentration effect.

6.6 Summary

The physical models in ANSYS CFX-10 for the calculation of horizontal liquid-solid flows

were investigated in this chapter. As a primary objective, the physical models for the solids-
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Figure 6.19: Pipe diameter effect on predicted us and cs for 0.55 mm at cs=15%.
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Figure 6.20: Pipe diameter effect on predicted us and cs for 0.55 mm at cs=30%.
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phase stress implemented in the software were investigated. The flow simulations of 0.18

mm and 0.55 mm sand-water mixtures were performed in 53.2 mm, 158.3 mm, and 263 mm

diameter pipes. Predictions using the models were compared to measured data. The simu-

lations studied the effects of solids bulk concentration, particle diameter, and pipe diameter.

The results showed that there is no significant difference between the solids-phase stress

closure models available in ANSYS CFX-10. The case where the a solids-phase stress

is not set active in the simulation (i.e. no solids stress model) leads to unrealistic solids

concentration prediction, especially in the wall region. The mean velocity predictions fail

to match the measured distributions. The calculated solids concentration profiles showed

reasonable comparison with the experimental data in the central part of the pipe but failed

to reproduce wall effects. The expected trend was obtained for the solids concentration

field but the solids-phase velocity predictions were not encouraging. An overall conclusion

is that the present models available in the software are not adequate for liquid-solid flow

predictions and therefore, require further investigation.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the summary, contributions, and conclusions of the study are presented. In

addition, recommendations for future work are identified.

7.1 Overall Summary

The present study involved experimental and numerical investigations of coarse-particle

liquid-solid flows in pipes. The experimental study primarily involved pressure drop mea-

surements in a 53 mm diameter vertical flow loop. Data was collected in both upward and

downward flow sections. The liquid-phase was water and the solids-phase was glass beads

with two diameters (0.5 mm and 2.0 mm). The solids-phase bulk concentration ranged

between 0 and 45% and the mean mixture velocity was between approximately 2 and 5.5

m s−1. In addition, radial solids velocity distributions were measured using the conductivity

probe in the upward flow section of the loop for several cases.

On the numerical side, flows of coarse particles at high concentrations in liquids in ver-

tical and horizontal pipes were simulated using the two-fluid model. Following an extensive

review of the literature, the constitutive relations required for closure of the two-fluid model

governing equations were discussed in the context of the physical mechanisms present in

the different flow regimes. For the vertical flow cases, investigations of the two-fluid model

focused on the particle-particle interaction and the wall boundary condition. Solids-phase

stress relations were used to model particle-particle interactions and investigate their effect

on solids velocity, concentration, and turbulence predictions. Solids-phase wall boundary

condition models were also investigated by testing their ability to predict frictional head
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losses. The models were implemented in the commercial CFD package ANSYS-CFX us-

ing CFX-4.4 for the vertical flow simulations.

Three different model formulations for the solids-phase stress (the ks−εs, ks−εs−Ts,

and ks − kfs models) were investigated. One of the models requires a constant solids-phase

viscosity to be specified. In this case, two distinct values were considered. The predictions

were compared with available experimental solids velocity and concentration profiles taken

from the studies of Sumner et al. (1990). Computations were performed for flows of two

particle diameters (470 µm and 1700 µm) of sand with a material density of 2650 kg m−3.

The solids-phase bulk concentrations were 10% and 30% for the 470 µm particles and

10% and 20% for the 1700 µm particles. All the flows simulated were at a mean velocity

of approximately 3 m s−1. Solids-phase wall boundary condition formulations were also

investigated for the prediction of frictional head loss in vertical liquid-solid pipe flows.

Five models for the solids-phase wall boundary condition were tested and the results were

compared to the experimental results of Shook and Bartosik (1994). For the simulations,

the solids-phase bulk concentration ranged from 0 to 40% in intervals of 10% and the mean

mixture velocity was nominally between 2 and 6 m s−1. The particles were PVC (material

density 1400 kg m−3) and had a diameter of 3400 µm.

For horizontal flows, the simulations were performed using ANSYS CFX-10. The

capability of the existing solids-phase stress models in the software to predict the flow

of coarse-particle liquid-solid mixtures were investigated. The simulations were performed

for three pipe diameters (53, 158, and 263 mm), two solids-phase bulk concentrations (15%

and 30%), and two particle diameters (180 and 550 µm). The model results were compared

to the experimental results of Gillies (1993). The simulations focussed on prediction of the

solids velocity and concentration distributions.

7.2 Contributions

The main contributions of this study are summarized as follows:
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1. A comprehensive review and analysis of two-fluid modelling of liquid-solid flows

with application to coarse-particle slurry flows.

2. The first study to engage in the comparative evaluation of two-fluid models to predict

coarse-particle flows with special attention on high solids-phase concentration.

3. Evaluation of various physically-based stress models for the two-fluid model to pre-

dict local distributions of solids velocity and concentration in liquid-solid slurry

flows.

4. A study of wall boundary condition formulations in the context of the two-fluid

model to predict frictional head losses for coarse-particle dense flows of liquid-solid

mixtures.

5. An exploratory study of the solids stress closure models available in the commercial

CFD software, ANSYS CFX.

6. Application of solids-phase stress models from the kinetic theory of granular flow

to coarse-particle liquid-solid flows at solids-phase bulk concentration values higher

than 10%.

7.3 Conclusions

The specific conclusions from the present study are outlined as follows:

7.3.1 Experimental work

1. The radial solids velocity profiles measured in the upward flow section of the loop

showed steep velocity gradients near the wall. The profiles also indicated increased

slip velocity in th upward flow section at lower velocities due to increase in the solids

mean concentration. Data for the mean solids concentration in the flow loop sections

was not obtained, due to problems with the measurement probe, for detailed analysis.

2. The magnitude of the measured pressure drop in both the upward and downward

flow sections increases with increasing bulk velocity. The measured pressure drop
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also exhibited a dependence on the solids bulk concentration by an upward shift

in the value for the upward flow section and a downward shift in the value for the

downward flow section. The dependence of the measured pressure drop on the solids

bulk concentration is mainly attributed to the gravitational contribution to the total

pressure drop. The effect of the gravitational pressure drop is more on the flow with

the 0.5 mm glass beads compared to the flow with the 2.0 mm glass beads.

3. The wall shear stress was determined by subtracting the gravitational contribution

from the measured pressure drop. For flow with the 0.5 mm glass beads at high

bulk velocities in the upward flow section, the values of the wall shear stress were

essentially similar for each concentration. At lower bulk velocities, the increase in

the wall shear stresses for the flow with the 0.5 mm glass beads is more compared to

higher velocities. For the large particle (2.0 mm glass beads), the observations were

similar but the effect of concentration was much less in the upward test section.

4. In the downward flow section, the wall shear stress also increased as the bulk con-

centration was increased for the case of the flow with the 0.5 mm glass beads. The

increase in the values of the wall shear stress is more at lower bulk velocities than at

higher bulk velocities, and less compare to the upward flow section. The values of

the wall shear stress for the flow of the 2.0 mm glass beads increased for all the bulk

velocities investigated.

5. The increase is more pronounce in the upward flow section than in the downward

flow section, and was attributed to the effect of different mean solids concentration

values in the flow section.

6. In both test sections as well as for both particle sizes (i.e. the 0.5 mm and 2.0 mm

glass beads), the wall shear stress does not depend on the bulk concentration below

10%.
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7.3.2 Numerical work

7.3.2.1 Vertical flows: Comparison of solids-phase stress closures

1. For all three models for the solids stress tested, the solids velocity and concentration

predictions were better for the smaller particles (470 µm) than the larger particles

(1700 µm), irrespective of the solids-phase bulk concentrations considered.

2. The models gave poor predictions for the velocity and concentration profiles for flows

with larger particles for all the concentrations investigated. The kf − εf − ks − εs −
Ts model performed better in predicting the solids velocity. The models could not

reproduce the experimental results of the solids concentration distributions for the

1700 µm particles.

3. The trends of the liquid-phase turbulence kinetic energy were similar to single-phase

flow but the magnitudes were typically lower than for single phase flows for all the

models investigated. Close to the wall of the pipe in the region where the solids-phase

concentration is depleted, all the models predicted similar liquid-phase turbulence

kinetic energy. The values of the liquid-phase turbulence kinetic energy for the liquid-

solid flows were higher in than that predicted for the single-phase case.

4. The models produce increased peak values at the wall with increased solids-phase

bulk concentration. For the smaller particles, the liquid-phase turbulence kinetic

energy was attenuated with increase in solids bulk concentration for the kf − εf −
ks − εs and kf − εf −ks − εs −Ts models. The liquid-phase turbulence kinetic energy

was enhanced for the kf − εf − ks − kfs model in the region towards the centre of the

pipe. For the case of the larger particles, the liquid-phase turbulence kinetic energy

was attenuated for all three models with no significant on the effect of concentration.

5. For each model, solids-phase turbulence kinetic energy was lower close to the wall

and higher towards the centre of the pipe than that for the liquid phase. Increased

in solids bulk concentration produced lower solids turbulence kinetic energy for all

the models investigated. The values of solids-phase turbulence kinetic energy were

higher for larger particles than for the smaller particles.
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6. The solids-phase eddy viscosity was much larger than the liquid-phase eddy viscosity,

and decreased with concentration and increased with particle size for the kf − εf −
ks − εs and kf − εf − ks − εs − Ts models. The solids-phase eddy viscosity predicted

using the kf − εf − ks − kfs model was unique and different with a peak value close

to the wall and lower values at the wall and at the centre of the pipe.

7. From the simulations results, the kf − εf − ks − εs − Ts model is considered the

bestbetter s. The solids-phase eddy viscosity predicted using the kf − εf − ks − kfs

model was unique and different with a peak value close to the wall and lower values

at the wall and at the centre of the pipe.

7.3.2.2 Vertical flows: Pressure drop prediction

1. For the flow conditions investigated, neither the no-slip nor the free-slip is an appro-

priate boundary condition for the solids-phase. The free-slip wall boundary condition

produced values of the frictional head loss that was lower than the measured data, in-

cluding that for single-phase flow. The no-slip wall boundary condition predictions

were between the measured data and that computed for the single-phase flow.

2. The wall boundary conditions of Ding and Lyczkowski (1992) and Bartosik (1996)

were found to perform better at higher mean mixture velocities for the 10% solids

mean concentration. They, however, did not reproduce the measured pressure drops.

3. From the present work, it is evident that an improved solids wall boundary condition

formulation is required for accurate prediction of frictional head loss in liquid-solid

two-phase vertical flows.

7.3.3 Horizontal flows

1. The simulation with three model options in ANSYS CFX-10 for the solids phase

stress tensor (i.e. no modelling for the granular temperature, zero-equation and al-

gebraic equilibrium models) and the so-called dispersed-phase zero equation model
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for the solids-phase turbulence for the 180 µm and 550 µm sand-water slurries with

produce similar results.

2. The characteristic flow features of horizontal flow of medium (180 µm particles) and

coarse (550 µm particles) sand-water slurries can be qualitatively described using

ANSYS CFX-10.

3. Comparing the predictions with experimental data, applying the kinetic theory of

granular flows using an algebraic equilibrium model for the granular temperature for

the solids-phase stress produced a more realistic distribution of solids-phase concen-

tration than the solids velocity. The model fail to reproduce observed local distribu-

tions of the solids velocity.

4. The effect of solids-phase bulk concentration on solids velocity and concentration

distributions exhibited the expected asymmetric characteristic of negatively buoyant

solids flow in liquid. The local solids velocity in the upper part of the pipe at a solids-

phase bulk concentration of 30% was slightly higher than that computed at 15%

solids-phase bulk concentration. In the lower part of the pipe, they were essentially

identical.

5. For flow in the 53 mm diameter pipe, the effect of particle diameter on the solids

velocity and concentration distributions was mixed. The local velocity of the larger

sand particles was lower than that of the smaller particles in the upper part of the pipe,

while the lower part, it was much higher. The solids-phase concentration profiles

showed a similar effect. In the lower part of the pipe, the values of the predicted

concentration are higher than the measured values.

6. For the effect of pipe diameter, the solids velocity in the smaller pipe is higher than

that of the larger pipe over almost the entire pipe cross-section. The value of the

solids-phase concentration is higher in the lower half of both pipes, and lower in the

upper region.

182



www.manaraa.com

7.3.4 Recommendations

Based on the comparisons with experimental data as well as the comparative work on

different models, the following recommendations are proposed:

1. The modelling of the unclosed terms in the two-fluid model should be explored in

more detail.

2. The flow type investigated in this study is associated with complex physics, the under-

standing of which is far from complete. Microscopically, the flow is unsteady and the

individual discrete particles of the solids-phase are in continuous motion. Presently,

closure models based upon the kinetic theory of granular flows appear to provide

some insight. Simulations in the context of discrete element simulation would pro-

vide further insight to understanding the dynamics involved. Such simulations would

also aid in the development of better closure laws for the two-fluid model for dense

flows.

3. Wall boundary conditions for the liquid and solids phases should each account for the

other phase’s effect in the model. For the case of flow in ducts of arbitrary geometry,

the effect of solids concentration must be carefully considered in the wall bound-

ary condition model. In addition, modification to existing wall boundary condition

models for granular flows should carefully consider wall roughness effects where

applicable.

4. As a requirement for two-fluid model validation, measurements of phasic variables

like velocity and concentration as well as higher-order variables are needed.

5. To effectively implement and have full access to modify the models, an overall recom-

mendation is that the models should be tested and developed using in-house programs

where all model parameters and constants can be easily and completely verified.

6. Finally, extensive technical support and training from developers is strongly recom-

mended when applying a commercial code such as CFX for the types of flow investi-

gated in this study. This is because most commercial CFD codes have not been fully
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tested for coarse particle slurry flows compared to single-phase or gas-liquid flows.
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APPENDIX A

ELECTROMAGNETIC FLOW METER CALIBRATION

This appendix describes the calibration procedure for the electromagnetic flow meter used
to measure the bulk velocity in the pipeline in this thesis. The calibration was performed
and documented by Schergevitch (2006). The description provided in this appendix is an
edited version.

A.1 Sampling Drum

In the electromagnetic flow meter calibration, a drum was needed for sample collection.
A calibration of the height versus volume of a drum to be used for sample collection was
done. The height of the drum, from the inside of the bottom to the top lip, was measured to
be 33.375 inches. A mark was placed on the lip of the drum where the measurement was
made to ensure that all future measurements were taken at the same position. The drum
was placed on a floor scale. The weight of the empty drum was zeroed on the scale. Water
was incrementally added to the drum. For each addition, the weight and temperature of the
water were taken. The water temperature was used to determine density, which was used
in the conversion of mass to volume.

A.2 Volumetric Calibration of Sampling Drum

A height versus volume calibration of the drum employed was performed and the results
are shown in Figure A.1. The height of the drum was measured to be 84.77 cm from
the inside of the bottom to the top lip. A mark was placed on the lip of the drum where
the measurement was made to ensure that all future measurements were taken at the same
position. The drum was placed on a floor scale and the weight of the empty drum was
zeroed on the scale. Water was then incrementally added to the drum and the weight and
temperature of the water were recorded. The water temperature was used to determine
density, which was subsequently used to determine the volume.

A.3 Calibration Setup and Procedure

A Linatex 3 × 2 pump with a Reeves variable-speed drive was used to provide flow for
the calibrations. The suction side of the pump was connected to a conical bottomed tank
equipped with a mixer. The Foxboro Electromagnetic Flowmeter was installed on the pump
discharge line in a horizontal orientation with 54-inches of straight piping before the flow
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Figure A.1: Sampling drum calibration.
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meter. A 2-inch flexible hose, of sufficient length to reach the top of the tank, was connected
to the discharge side of the flow meter. The output of the flow meter transmitter was
connected to the Saskatchewan Research Council data acquisition system. The pump was
set to provide the required flow, with the slurry (or water) being re-circulated back into the
supply tank. When ready, the flow was diverted to the sampling drum, and the sampling
time and the output voltage reading from the flow meter transmitter were then measured.
After the level of the sample in the drum was noted, the contents were returned to the supply
tank. This measurement was used to calculate the sample volume (see Figure A.1). This
procedure was repeated for several flow rates.

A.4 Calibration with Slurry and Water

1160 Litres of slurry made up of 403 kg of 30/50 sand (d50 = 500 µm) and water was
prepared in the supply tank. The mixer was set such that adequate mixing was provided
while ensuring minimum air entrainment. The procedure described above was performed
for four flow rates and the output values were recorded. For these four sets of data, the
solids concentration flowing through the flow meter was not accounted for. To consider
the effect of solids concentration, additional data for five flow rate settings were obtained
where the level of the solids in the sample drum for each case was measured as well as the
level of the total sample collected. This measurement allowed the solids concentration in
the slurry flowing through the meter to be measured. The settled solids in the drum were
assumed to have a concentration of 62% by volume. With this value, which was assumed to
be the concentration at maximum packing, and the total volume of the mixture, the solids
concentration in the flowing mixtures was determined. The calibration data is plotted in
terms of the flow rate as a function of the EMFM output voltage (Figure A.2). Solids
concentrations of 20% and 40% by volume were used. After the calibration with the slurry,
the system was flushed and replaced with an equal volume of water. The mixer was set to
run at similar condition as during the calibration with the slurry. The procedure described
above was repeated for several flow rates. As in the case of the slurry, the measured flow
rate as a function of the output voltage from the MFM transmitter is shown in Figure A.2.

As shown in Figure A.2, the calibration lines for both water and the slurry are similar.
Since, the flow rate through the EMFM is measured as the amount of the volume of the
mixture passing through it for a known period of time interval, the flow rate is interpreted
as that of the mixture in this thesis.
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APPENDIX B

SOLIDS VELOCITY MEASURED WITH THE L-PROBE

In this appendix, additional solids velocity profiles for the upward flow of 0.5 mm and 2.0
mm glass beads at bulk concentrations between 5% and 45% in water are shown. The
profiles for the 0.5 mm glass bead slurries are presented in Figures B.1 through B.3. The
bulk velocity is denoted by V and Uus refers to the means solids velocity in the upward
flow section in the figures. Those obtained for the 2.0 mm glass bead slurries are shown
in Figure B.4. As noted in Chapter 3, the general trend of the profiles resembles those
obtained in previous studies using similar probes. The solids velocity profiles for the 2.0
mm glass beads were not realistic. This can be seen in Figure B.4 where the velocity profile
does not follow the expected trend near the wall.
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Figure B.1: Solids velocity profiles for vertical upward flow of 0.5 mm glass beads at bulk
solids concentration of 5% in water: (a) bulk velocity = 2 m s−1, and (b) bulk velocity = 4
m s−1.
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Figure B.2: Solids velocity profiles for vertical upward flow of 0.5 mm glass beads at bulk
solids concentration of 25% in water: (a) bulk velocity = 2 m s−1, and (b) bulk velocity =
3 m s−1.

202



www.manaraa.com

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
(a)

 

 

U
s (

m
s-1

)

y/R

 C
s
 = 45%, d

p
 = 0.5 mm

          V = 2 m s-1, U
us

 = 1.88 m s-1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(b)

 

 

U
s (

m
s-1

)

y/R

 C
s
 = 45%, d

p
 = 0.5 mm

          V = 3 m s-1, U
us

 = 3.05 m s-1

Figure B.3: Solids velocity profiles for vertical upward flow of 0.5 mm glass beads at bulk
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Figure B.4: Solids velocity profiles for vertical upward flow of 2.0 mm glass beads at bulk
solids concentration of 40% in water: (a) bulk velocity = 2 m s−1, and (b) bulk velocity =
3 m s−1.
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APPENDIX C

RAW PRESSURE DROP DATA

The measured pressure gradients are provided in this appendix. Tables C.1 through C.7
show the data for the 0.5 mm glass beads, and Tables C.8 through C.10 represents measured
data for the 2.0 mm glass beads. In the tables, the total flowrate, which is used to calculate
the bulk velocity, is measure with the Electromagnetic Flow Meter (EFM). The pressure
gradients data in the upward and downward test sections are given by equations (3.6) and
(3.7); the average pressure gradient corresponds to equation (3.8).

Table C.1: Pressure gradient data for flow 0.5 mm glass beads at 5% bulk solids concentra-
tion in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
11.11 3.069 4.604 22.9 3.8365 5.02
10.15 2.492 4.038 22.9 3.265 4.58
8.96 1.865 3.370 22.9 2.6175 4.05
7.74 1.281 2.767 22.8 2.024 3.50
6.75 0.866 2.327 22.8 1.5965 3.05
5.52 0.414 1.835 22.8 1.1245 2.49
4.47 0.104 1.459 22.7 0.7815 2.02
4.04 0.000 1.306 22.7 0.653 1.82
3.49 -0.107 1.115 22.7 0.504 1.58
2.18 -0.191 0.644 22.7 0.2265 0.98
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Table C.2: Pressure gradient data for flow of 0.5 mm glass beads at 25% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
9.78 -0.396 7.099 23.2 3.351 4.42
9.34 -0.648 6.850 22.8 3.101 4.22
8.89 -0.890 6.594 22.9 2.852 4.02
8.23 -1.228 6.253 22.9 2.513 3.72
7.74 -1.469 6.006 22.8 2.269 3.50
7.15 -1.741 5.731 22.9 1.995 3.23
6.69 -1.938 5.524 22.9 1.793 3.02
6.09 -2.182 5.271 22.8 1.545 2.75
5.62 -2.364 5.0756 22.8 1.356 2.54
4.97 -2.579 4.8214 22.8 1.121 2.24
4.40 -2.782 4.6091 22.8 0.914 1.99
3.47 -3.057 4.3541 22.8 0.649 1.56
2.75 -3.202 4.1573 22.9 0.478 1.24

Table C.3: Pressure gradient data for flow of 0.5 mm glass beads at 30% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
9.01 -1.292 7.480 26.5 3.094 4.07
8.27 -1.740 7.042 26.8 2.651 3.73
7.71 -2.033 6.739 26.7 2.353 3.48
7.23 -2.273 6.507 26.7 2.117 3.26
6.76 -2.489 6.291 26.6 1.901 3.05
6.05 -2.801 5.979 26.5 1.589 2.73
5.61 -2.985 5.805 26.3 1.410 2.53
4.92 -3.253 5.566 26.3 1.157 2.22
4.41 -3.443 5.434 26.2 0.996 1.99
3.92 -3.615 5.335 26.2 0.860 1.77
3.38 -3.779 5.229 26.2 0.725 1.53
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Table C.4: Pressure gradient data for flow of 0.5 mm glass beads at 35% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
8.36 -2.310 7.601 27.7 2.646 3.78
7.77 -2.633 7.322 27.8 2.345 3.51
7.18 -2.940 7.057 27.8 2.059 3.24
6.68 -3.180 6.862 27.7 1.841 3.02
6.04 -3.456 6.663 27.6 1.604 2.73
5.46 -3.692 6.526 27.5 1.417 2.47
4.96 -3.881 6.428 27.4 1.274 2.24
4.41 -4.071 6.334 27.4 1.132 1.99
3.85 -4.255 6.238 27.3 0.992 1.74
3.38 -4.384 6.147 27.3 0.882 1.53

Table C.5: Pressure gradient data for flow of 0.5 mm glass beads at 40% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.59 -3.380 7.923 28.6 2.272 3.43
7.22 -3.553 7.815 28.7 2.131 3.26
6.68 -3.779 7.708 28.7 1.965 3.02
6.09 -4.001 7.581 28.6 1.790 2.75
5.59 -4.201 7.480 28.5 1.640 2.52
4.97 -4.446 7.363 28.4 1.459 2.24
4.55 -4.623 7.291 28.3 1.334 2.05
3.95 -4.781 7.177 28.2 1.198 1.78
3.41 -4.894 7.095 28.2 1.101 1.54
2.98 -4.977 7.063 28.2 1.043 1.35
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Table C.6: Pressure gradient data for flow of 0.5 mm glass beads at 45% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.46 -4.135 8.843 22.7 2.354 3.37
7.20 -4.250 8.734 22.6 2.242 3.25
6.69 -4.444 8.599 22.6 2.078 3.02
6.09 -4.664 8.456 22.6 1.896 2.75
5.51 -4.815 8.344 22.5 1.765 2.49
4.94 -4.949 8.217 22.5 1.634 2.23
4.47 -5.118 8.137 22.5 1.510 2.02
3.87 -5.353 8.085 22.5 1.366 1.75
3.36 -5.539 8.037 22.5 1.249 1.52
2.75 -5.745 8.045 22.4 1.150 1.24

Table C.7: Pressure gradient data (repeat) for flow of 0.5 mm glass beads at 45% bulk solids
concentration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.13 -4.165 8.652 22.9 2.244 3.22
7.18 -4.156 8.643 22.9 2.244 3.24
6.70 -4.381 8.507 22.9 2.063 3.02
6.72 -4.377 8.512 22.9 2.068 3.03
6.11 -4.615 8.358 22.8 1.872 2.76
6.09 -4.616 8.373 22.8 1.878 2.75
5.57 -4.762 8.250 22.8 1.744 2.52
5.58 -4.783 8.250 22.8 1.733 2.52
5.00 -4.958 8.125 22.8 1.584 2.26
5.00 -4.967 8.120 22.8 1.577 2.26
4.47 -5.101 8.020 22.8 1.460 2.02
4.47 -5.106 8.024 22.7 1.459 2.02
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Table C.8: Pressure gradient data for flow of 2.0 mm glass beads at 5% bulk solids concen-
tration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.59 -3.380 7.923 28.6 2.272 3.43
7.22 -3.553 7.815 28.7 2.131 3.26
6.68 -3.779 7.708 28.7 1.965 3.02
6.09 -4.001 7.581 28.6 1.790 2.75
5.59 -4.201 7.480 28.5 1.640 2.52
4.97 -4.446 7.363 28.4 1.459 2.24
4.55 -4.623 7.291 28.3 1.334 2.05
3.95 -4.781 7.177 28.2 1.198 1.78
3.41 -4.894 7.095 28.2 1.101 1.54
2.98 -4.977 7.063 28.2 1.043 1.35

Table C.9: Pressure gradient data for flow of 2.0 mm glass beads at 10% bulk solids con-
centration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.46 -4.135 8.843 22.7 2.354 3.37
7.20 -4.250 8.734 22.6 2.242 3.25
6.69 -4.444 8.599 22.6 2.078 3.02
6.09 -4.664 8.456 22.6 1.896 2.75
5.51 -4.815 8.344 22.5 1.765 2.49
4.94 -4.949 8.217 22.5 1.634 2.23
4.47 -5.118 8.137 22.5 1.510 2.02
3.87 -5.353 8.085 22.5 1.366 1.75
3.36 -5.539 8.037 22.5 1.249 1.52
2.75 -5.745 8.045 22.4 1.150 1.24
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Table C.10: Pressure gradient data for flow of 2.0 mm glass beads at 40% bulk solids
concentration in water

Total Downward Upward Temperature Average Velocity
Flowrate Test Section Test Section dP/dz

(L/s) (kPa/m) (kPa/m) (oC) (kPa/m) (m/s)
7.13 -4.165 8.652 22.9 2.244 3.22
7.18 -4.156 8.643 22.9 2.244 3.24
6.70 -4.381 8.507 22.9 2.063 3.02
6.72 -4.377 8.512 22.9 2.068 3.03
6.11 -4.615 8.358 22.8 1.872 2.76
6.09 -4.616 8.373 22.8 1.878 2.75
5.57 -4.762 8.250 22.8 1.744 2.52
5.58 -4.783 8.250 22.8 1.733 2.52
5.00 -4.958 8.125 22.8 1.584 2.26
5.00 -4.967 8.120 22.8 1.577 2.26
4.47 -5.101 8.020 22.8 1.460 2.02
4.47 -5.106 8.024 22.7 1.459 2.02
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APPENDIX D

AVERAGING TECHNIQUES

The definitions of the averaging techniques applied to develop governing equations of mul-
tiphase flows in the Eulerian-Eulerian formulation are given here. Consider a given field
variable, ϕ, defined by the function ϕ = ϕ(r, t), which can be a scalar, vector or tensor of
a phase being studied at a fixed point in space r at any time, t. The averaging processes are
defined below:

1. The time average of ϕ(r, t) is defined by

〈ϕ〉t(r, t) =
1

T

∫ t+T/2

t−T/2

ϕ(r, t)d(τ), (D.1)

where T is the averaging time scale.

2. The volume average is defined by

〈ϕ〉v(r, t) =
1

V

∫

V

ϕ(r, t)dV, (D.2)

where V is the averaging volume.

3. The ensemble average, defined by

〈ϕ〉e(r, t) =
1

N

N∑

n=1

ϕn(r, t) (D.3)

is generally thought of as the most fundamental averaging process. In equations
(D.3), ϕn(r, t) is the realization of ϕ(r, t) over all possible realizations N or Ω.
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APPENDIX E

SAMPLE CFX-4.4 COMMAND FILE

In this appendix a sample of the input file use for CFX-4.4 simulations is provided. After
creating a geometry to be used for the simulation, a case need to be generated and the
file for that is called the command file in CFX-4.4. In the command file, one typically
sets the parameters required for the numerics, specifies the type of geometry, selects the
model(s) of interest, fluid properties, defines user-routine names, and sets inlet, outlet and
wall boundary conditions. A sample of a command file is given below:

1 >>CFX4
2 #CALC
3 TI = 1 . 0E−1;
4 U1 = 2 . 5 8E+00;
5 K1 = 3 . 0 * ( U1* TI ) * * 2 . 0 / 2 . 0 ;
6 E1 = 0 . 0 9 * * ( 3 . 0 / 4 . 0 ) * K1 * * ( 3 . 0 / 2 . 0 ) / ( 0 . 0 0 7 * 0 . 0 4 ) ;
7 T2 = 1 . 0E−1;
8 U2 = 2 . 5 8E+00;
9 K2 = 3 . 0 * ( U2* TI ) * * 2 . 0 / 2 . 0 ;

10 GT2 = 3 . 0 *K2 / 2 . 0 ;
11 E2 = 0 . 0 9 * * ( 3 . 0 / 4 . 0 ) * K2 * * ( 3 . 0 / 2 . 0 ) / ( 0 . 0 0 7 * 0 . 0 4 ) ;
12 CS2 = 0 . 0 8 7 ;
13 CS1 = 1.0−CS2 ;
14 #ENDCALC
15 >>SET LIMITS
16 TOTAL INTEGER WORK SPACE 10000000
17 TOTAL CHARACTER WORK SPACE 500000
18 TOTAL REAL WORK SPACE 17000000
19 >>OPTIONS
20 TWO DIMENSIONS
21 CYLINDRICAL COORDINATES
22 AXIS INCLUDED
23 TURBULENT FLOW
24 ISOTHERMAL FLOW
25 INCOMPRESSIBLE FLOW
26 STEADY STATE
27 USER SCALAR EQUATIONS 24
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28 NUMBER OF PHASES 2
29 >>USER FORTRAN
30 USRIPT
31 USRBF
32 USRVIS
33 USRDIF
34 USRSRC
35 USRWTM
36 USRPRT
37 >>VARIABLE NAMES
38 USER SCALAR1 ’USRDCC GPRESS ’
39 USER SCALAR2 ’USRDCC BULKVIS’
40 USER SCALAR3 ’USRDCC TAUXX’
41 USER SCALAR4 ’USRDCC TAUXY’
42 USER SCALAR5 ’USRDCC EXTAU’
43 USER SCALAR6 ’USRDCC GAM’
44 USER SCALAR7 ’USRDCC INTERF ’
45 USER SCALAR8 ’USRDCC UDRAG’
46 USER SCALAR9 ’USRDCC USMUL’
47 USER SCALAR10 ’USRDCC UMUSTURB’
48 USER SCALAR11 ’USRDCC UDPDX’
49 USER SCALAR12 ’USRDCC UDPDY’
50 USER SCALAR13 ’USRDCC UDPDZ’
51 USER SCALAR14 ’X SHEAR STRESS ’
52 USER SCALAR15 ’Y SHEAR STRESS ’
53 USER SCALAR16 ’USRDCC UMUFTURB’
54 USER SCALAR17 ’USRDCC TSCLT ’
55 USER SCALAR18 ’USRDCC TSCLP ’
56 USER SCALAR19 ’USRDCC TSCLC’
57 USER SCALAR20 ’USRDCC TSCLFS ’
58 USER SCALAR21 ’USRDCC UMUCT’
59 USER SCALAR22 ’USRDCC UMUSC’
60 USER SCALAR23 ’USRDCC UMUSH’
61 USER SCALAR24 ’USRDCC UDRIFT ’
62 >>PHASE NAMES
63 PHASE1 ’WATER’
64 PHASE2 ’SAND’
65 >>MODEL DATA
66 >>DIFFERENCING SCHEME
67 U VELOCITY ’HIGHER UPWIND’
68 V VELOCITY ’HIGHER UPWIND’
69 VOLUME FRACTION ’HYBRID’
70 K ’HYBRID’
71 EPSILON ’SUPERBEE’
72 >>RHIE CHOW SWITCH
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73 IMPROVED
74 / * >>SET INITIAL GUESS
75 >>INPUT FROM FILE
76 READ DUMP FILE
77 UNFORMATTED * /
78 >>TITLE
79 PROBLEM TITLE ’UPWARD LIQUID−SOLID SLURRY FLOW’
80 >>WALL TREATMENTS
81 PHASE NAME ’WATER’
82 NO SLIP
83 >>WALL TREATMENTS
84 PHASE NAME ’SAND’
85 SLIP
86 >>PHYSICAL PROPERTIES
87 >>FLUID PARAMETERS
88 PHASE NAME ’WATER’
89 VISCOSITY 1.0000E−03
90 DENSITY 9.9800E+02
91 >>FLUID PARAMETERS
92 PHASE NAME ’SAND’
93 VISCOSITY 1.0000E−8
94 DENSITY 2.650 E+03
95 >>MULTIPHASE PARAMETERS
96 >>PHASE DESCRIPTION
97 PHASE NAME ’WATER’
98 LIQUID
99 CONTINUOUS

100 >>PHASE DESCRIPTION
101 PHASE NAME ’SAND’
102 SOLID
103 DISPERSE
104 MEAN DIAMETER 470 .0 E−06
105 / * MEAN DIAMETER 1700 .0E−06*/
106 >>MULTIPHASE MODELS
107 >>MOMENTUM
108 INTER PHASE TRANSFER
109 SINCE
110 IPSAC
111 >>TURBULENCE PARAMETERS
112 >>TURBULENCE MODEL
113 PHASE NAME ’WATER’
114 TURBULENCE MODEL ’K−EPSILON ’
115 >>TURBULENCE MODEL
116 PHASE NAME ’SAND’
117 TURBULENCE MODEL ’K−EPSILON ’
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118 >>SOLVER DATA
119 >>PROGRAM CONTROL
120 MAXIMUM NUMBER OF ITERATIONS 100
121 MASS SOURCE TOLERANCE 1.0000E−15
122 ITERATIONS OF TEMPERATURE AND SCALAR EQUATIONS 2
123 ITERATIONS OF TURBULENCE EQUATIONS 1
124 ITERATIONS OF VELOCITY AND PRESSURE EQUATIONS 1
125 ITERATIONS OF HYDRODYNAMIC EQUATIONS 1
126 >>PRESSURE CORRECTION
127 SIMPLEC
128 >>UNDER RELAXATION FACTORS
129 PHASE NAME ’WATER’
130 U VELOCITY 6.0000E−01
131 V VELOCITY 6.0000E−01
132 PRESSURE 1 . 0E+00
133 VOLUME FRACTION 4 . 5E−02
134 VISCOSITY 4.0000E−01
135 K 5.0000E−01
136 EPSILON 5.0000E−01
137 >>UNDER RELAXATION FACTORS
138 PHASE NAME ’SAND’
139 U VELOCITY 4.0000E−01
140 V VELOCITY 6.0000E−01
141 PRESSURE 1 . 0E+00
142 VOLUME FRACTION 4 . 5E−02
143 VISCOSITY 4.0000E−01
144 K 5.0000E−01
145 EPSILON 5.0000E−01
146 >>MODEL BOUNDARY CONDITIONS
147 >>INLET BOUNDARIES
148 PHASE NAME ’WATER’
149 PATCH NAME ’INLET1 ’
150 / * For dp = 470 mic ; U = 2 . 5 8 and Cr = 0 . 0 8 7 * /
151 NORMAL VELOCITY #U1
152 VOLUME FRACTION #CS1
153 / * For dp = 470 mic ; U = 2 . 6 2 and Cr =0.278
154 NORMAL VELOCITY #U1
155 VOLUME FRACTION #CS1 * /
156 / * For dp = 1700 mic ; U = 2 . 7 7 and Cr =0.085
157 NORMAL VELOCITY #U1
158 VOLUME FRACTION #CS1 * /
159 / * For dp = 1700 mic ; U = 2 . 8 9 and Cr =0.177
160 NORMAL VELOCITY #U1
161 VOLUME FRACTION #CS1 * /
162 / * For D a n i e l 1965 : dp = 1700 mic ;U = 1 . 5 and Cr =0.224
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163 NORMAL VELOCITY #U1
164 VOLUME FRACTION #CS1 * /
165 K #K1
166 EPSILON #E1
167 >>INLET BOUNDARIES
168 PHASE NAME ’SAND’
169 PATCH NAME ’INLET1 ’
170 / * For dp = 470 mic ; U = 2 . 5 8 and Cr = 0 . 0 8 7 * /
171 NORMAL VELOCITY #U2
172 VOLUME FRACTION #CS2
173 / * For dp = 470 mic ; U = 2 . 6 2 and Cr =0.278
174 NORMAL VELOCITY #U2
175 VOLUME FRACTION #CS2 * /
176 / * For dp = 1700 mic ; U = 2 . 7 7 and Cr =0.085
177 NORMAL VELOCITY #U2
178 VOLUME FRACTION #CS2 * /
179 / * For dp = 1700 mic ; U = 2 . 8 9 and Cr =0.177
180 NORMAL VELOCITY #U2
181 VOLUME FRACTION #CS2 * /
182 / * For D a n i e l 1965 : dp = 1700 mic ;U = 1 . 5 and Cr =0.224
183 NORMAL VELOCITY #U2
184 VOLUME FRACTION #CS2 * /
185 K #K2
186 EPSILON #E2
187 >>WALL BOUNDARIES
188 PHASE NAME ’WATER’
189 PATCH NAME ’WALL1’
190 >>WALL BOUNDARIES
191 PHASE NAME ’SAND’
192 PATCH NAME ’WALL1’
193 >>WALL BOUNDARIES
194 PHASE NAME ’SAND’
195 PATCH NAME ’WALL1’
196 >>STOP
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APPENDIX F

SOLIDS VELOCITY AND CONCENTRATION RESULTS IN 263 mm PIPE

This appendix contains contour plots of the solids-phase velocity and concentration of sand
slurry flow in a 263 mm pipe.
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(a) Solids velocity and concentration at Cs = 15%

(b) Solids velocity and concentration at Cs = 30%

Figure F.1: Contour plots of solids velocity and concentration for 0.18 mm sand-in-water
flow in 263 mm pipe.
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(a) Solids velocity and concentration at Cs = 15%

(b) Solids velocity and concentration at Cs = 30%

Figure F.2: Contour plots of solids velocity and concentration for 0.55 mm sand-in-water
flow in 263 mm pipe.
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